

Are GPDs universal? Experimental Access at HERMES, PANDA and ATLAS

Michael Düren Universität Gießen

— Int. School of nuclear physics, Erice, Sept. 17, 2011 —

PS: I was here last time in 1999 talking about HERMES...

Generalized Parton Distributions

Quantum phase-space "tomography" of the nucleon

Generalized Parton Distributions and Generalized Distribution Amplitudes

GPDs and GDAs describe quarks and gluons in the nucleon

- spatial distributions (Form Factors)
- momentum distributions (Structure Functions)
- correlations in phase space (Wigner Distribution)
- spin and orbital angular momentum (Ji Sum Rule)

Wigner distribution in QM phase-space

- Wigner introduced the first well-defined phase-space distribution in quantum mechanics (1932) (despite of the uncertainty principle)
- Wigner function: $W(x,p) = \int \psi^* (x \eta/2) \psi (x + \eta/2) e^{ip\eta} d\eta$

Generalized Parton Distribution

- A Wigner operator can be defined that describes quarks and gluons in the nucleon
- The reduced Wigner distribution is related to Generalized Parton distributions (GPDs)

GPDs describe e.g. correlations of transverse position and longitudinal momentum

 r_{\perp}

 $f(x,r_1)$

0

HERMES: a pioneering experiment

... from Ellis-Jaffe to Ji et al. ...

The HERMES Experiment

- Designed at times of the spin crisis
 - Ellis-Jaffe & Bjorken sum rule
 - strange quark polarization
- 12 years data taking 1995-2007

Pioneering results of DVCS

- Today: most complete experimental access:
 - charge reversal (e⁺ and e⁻ beams)
 - beam spin reversal (both beam helicities)
 - target spin reversal (parallel, transverse, unpolarized)
 - target mass variation (H, D, He, N, Ne, Kr, Xe)
 - recoil and spectator proton detection

- ...

HERMES with recoil detection

Deeply Virtual Compton Scattering (DVCS)

GPDs = probability amplitude for a nucleon to emit a parton with $x+\xi$ and to absorb it with momentum fraction $x-\xi$

$$\xi \approx \frac{x_{Bj}}{2 - x_{Bj}}$$

Exclusive $ep \rightarrow epy$ cross section at HERMES

Separation of amplitudes $\Delta \vec{S}_{\perp}$ \vec{k}' \vec{k} reversal of charge and spin ϕ_S non q Fourier analysis of ϕ azimuthal modulation Interference term asymmetrie $\mathcal{A}_{\mathrm{LU}}^{\mathrm{I}}(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{+\leftarrow}) \bigcirc (d\sigma^{-\rightarrow} - d\sigma^{-\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{+\leftarrow}) + (d\sigma^{-\rightarrow} + d\sigma^{-\leftarrow})}$ Fourier coefficients $-rac{K_{\mathrm{I}}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)}$ $s_n^{\rm I}\sin(n\phi)$ $\sum_{n=1}^{2} c_n^{\mathrm{BH}} \cos(n\phi) + rac{1}{Q^2}$ $rac{K_{ m BH}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)}$ $c_n^{ m DVCS} \cos(n\phi)$

HERMES recoil detector

- Kinematic fit of complete
 DVCS event: ep→e'p'γ
 - e': spectrometer
 - γ : calorimeter
 - p': recoil detector
- >99.9% purity

M. Düren, Univ. Giessen

Recoil fibre detector made in Giessen

Beam helicity asymmetry with/without recoil detection

HERMES: Conclusion and Outlook

- GDPs are THE access to the nucleon structure
- HERMES is a pioneering experiment of DVCS
- Many more results from HERMES:
 - nuclear DVCS
 - exclusive meson production
 - ...

PANDA: an experiment with time-reversed protons

... from spectroscopy to internal structure...

Time reversal / crossed diagrams

Scattering

Generalized Parton Distributions

Annihilation

Transition Distribution Amplitudes

Generalized Distributions Amplitudes

Measure GDAs at PANDA

Another Ansatz: Transition Distribution Amplitudes (TDA)

 $p\overline{p} \rightarrow \gamma \gamma^* \rightarrow \gamma \ e^+ e^$ and $p\overline{p} \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 e^+ e^-$

Whatever the theory is ...

... PANDA should measure it

PANDA detector

FAIR

Highest luminosities needed for GDAs ... not before ... 202X

AFP at ATLAS

... ATLAS forward protons...

Diffractive Physics at LHC

1/3 of events at LHC are diffractive: rich physicsmore effort is needed to understand it

ATLAS Forward Detectors

ZDC in TAN

ALFA

AFP: 220m, 420m

Hamburg Beam Pipe

Moveable beam pipe with pockets to replace "Roman Pots"

M. Düren, Univ. Giessen

JINST 4 2009 t10001

Cherenkov timing detectors

Quartz bars

Quartz fibres (Giessen)

10 ps time resolution needed to reconstruct vertex position at ATLAS IP within 2 mm

ALFA detector at +/- 240 m from ATLAS

ALFA hit map y vs x minimum bias trigger

ALFA fibre detector made in Giessen

First elastic pp-data from the ALFA detector at ATLAS/LHC at E=7 TeV

beam optics: β*= 90m June 28th, 2011 proton stays intact after collision at 7 TeV

Conclusions and Outlook

- New concepts of GPDs, Double Distributions, etc. are used to describe hard exclusive reactions, especially DVCS asymmetries
- HERMES and JLab have done first explorative measurements of the orbital angular momentum of quarks in the proton
- Results are consistent with models of the nucleon and with lattice QCD calculations
- GPDs are also important for experiments at FAIR and LHC
- PANDA will measure crossed processes
- ATLAS will measure hard diffractive processes
- A precision mapping of GPDs requires a polarized high luminosity ep-collider, EIC, e.g. at FAIR

Thanks to ...

- my group in Giessen
- my collaborators at HERMES, PANDA, ATLAS
- especially thanks for plots and transparencies from Ji, I. Brodski, Riedl, Yaschenko, Stenzel, and others ...
- and the organizers for inviting me here