Meson spectroscopy at electron-positron colliders

R

Marko Bračko

University of Maribor

Univerza v-Mariboru

J. Stefan Institute, Ljubljana, Slovenia

International School of Nuclear Physics, 33rd Course: From Quarks and Gluons to Hadrons and Nuclei Erice, Sicily, 16th – 24th September 2011

Outline

- Introduction & motivation
- Experiments
- Charmonium and charmonium-like states
- Bottomonium and bottomonium-like states
- Summary

Introduction & motivation

Studies of hadrons

Studies of strong interaction

• Quark models based on QCD:

(mesons)

- Predict states (also beyond the qqq, qq sytems)
- Predict properties (masses, widths, decays, ...)
- Measurements:
 - Tests of QCD predictions
 - Provide the feedback for improvement of models
- Disagreements with models

New phenomena, new particles....

Marko Bracko: Meson spectroscopy at ee colliders

Erice school 2011, Erice, Sicily

Experiments

Marko Bracko: Meson spectroscopy at ee colliders

Experiments

Marko Bracko: Meson spectroscopy at ee colliders

Charmonium(-like) states

Marko Bracko: Meson spectroscopy at ee colliders

cc[-like] production at B-factories

Marko Bracko: Meson spectroscopy at ee colliders

Standard Charmonium States

Standard Charmonium States

Marko Bracko: Meson spectroscopy at ee colliders

Standard Charmonium States C

Observed recently (= since 2002)

from Eur. Phys. J. C71, 1534 (2011)

State	$m \; (MeV)$	Γ (MeV)	J^{PC}	Process (mode)
$h_c(1P)$	3525.45 ± 0.15	0.73 ± 0.53	1+-	$\psi(2S) \to \pi^0(\gamma \eta_c(1S))$
		(<1.44)		$\psi(2S) \rightarrow \pi^0(\gamma)$
				$p\bar{p} ightarrow (\gamma \eta_c) ightarrow (\gamma \gamma \gamma)$
				$\psi(2S) \to \pi^0()$
$\eta_c(2S)$	3637 ± 4	14 ± 7	0-+	$B \to K(K_S^0 K^- \pi^+)$
				$e^+e^- \rightarrow e^+e^-(K^0_SK^-\pi^+)$
				-+- $T(-h())$
				$e^{\cdot}e^{-} \rightarrow J/\psi()$
$\chi_{c2}(2P)$	3927.2 ± 2.6	24.1 ± 6.1	2++	$e^+e^- \rightarrow e^+e^-(DD)$
[Z(3930)	– at discover	Ŋ		

Marko Bracko: Meson spectroscopy at ee colliders

... and many exotic candidates (X, Y, Z)

🖷 New states		from Eur. Phys. J. C71, 1534 (2011		
State	M, MeV	Γ, MeV	J^{PC}	Process
X(3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$
		(< 2.2)		$p\bar{p} \to (\pi^+\pi^- J/\psi) + \dots$
				$B \to K(\omega J/\psi)$
				$B \to K(D^{*0}D^{0})$
				$B \to K(\gamma J/\psi)$ $P \to K(\gamma \psi(2S))$
V(2015)	2015.6 ± 2.1	28 ± 10	0/2?+	$B \to K(\gamma \psi(2S))$ $B \to K(\gamma \psi(2S))$
Λ (3913)	5915.0 ± 5.1	20 ± 10	0/2	$B \rightarrow K(\omega J/\psi)$ $\gamma \gamma \rightarrow (\omega J/\psi)$
X(3940)	3942^{+9}	37^{+27}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$
		-17		$e^+e^- \rightarrow J/\psi()$
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$
				$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$
				$e^+e^- \to (\pi^0\pi^0 J/\psi)$
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi')$
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	$1^{}$	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$

Marko Bracko: Meson spectroscopy at ee colliders

... and many candidates (X, Y, Z)

🖻 New states		from Eur. Phys. J. C71, 1534 (2		rs. J. C71, 1534 (2011)
State	M, MeV	Γ, MeV	J^{PC}	Process
X(3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$
		(< 2.2)		$p\bar{p} \to (\pi^+\pi^- J/\psi) + \dots$
				$B \to K(\omega J/\psi)$
				$B \to K(D^{*0}D^{0})$ $B \to K(\alpha, L/\alpha)$
				$B \to K(\gamma J/\psi)$ $B \to D(\gamma J/2S))$
X(391)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \rightarrow K(\alpha I/\psi)$
	001010 ± 011	20 1 10	· / -	$\gamma \gamma ightarrow (\omega, I/\psi)$
X(394))	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/v (D\bar{D}^*)$
		e of the		tes will J/ψ ()
Y(400)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- ightarrow \gamma(\pi^+\pi^- J/\psi)$
$Z_1(4050)^+$	4051 ⁺²⁴ De	menti		$B \to K(\pi^+ \chi_{c1}(1P))$
Y(414)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$
X(416))	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/v (D\bar{D}^*)$
$Z_2(4250)$	4240 45	1(1 - 72)	<i>:</i>	$B \rightarrow K(\pi^+\chi_{c1}(1P))$
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$
				$e^+e^- \to (\pi^+\pi^- J/\psi)$
				$e^+e^- \to (\pi^0\pi^0 J/\psi)$
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi')$
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$

Marko Bracko: Meson spectroscopy at ee colliders

... and many candidates (X, Y, Z)

Marko Bracko: Meson spectroscopy at ee colliders

Standard Charmonia - News

Marko Bracko: Meson spectroscopy at ee colliders

η_c(1S) & η_c(2S) – Status @ PDG2010

η_c(1S): 1 ¹S₀, J^{pc}=0⁻⁺

$\eta_c(1S)$ properties: $\psi' \rightarrow \gamma \eta_c(1S)$ decays at BES

Hai-Bo Li @ LP11

Considering the interference between η_c and non-resonant decays,

mass: 2984.4±0.5_{stat}±0.6_{sys} MeV/c² width: 30.5±1.0_{stat}±0.9_{sys} MeV φ: 2.35±0.05_{stat}±0.04_{sys} rad

Marko Bracko: Meson spectroscopy at ee colliders

 ϕ : relative phase between η_c and non-resonant component. An universal phase for different modes is used.

First ψ'→γη_c(2S) decays at BESIII

Marko Bracko: Meson spectroscopy at ee colliders

 $\eta_{c}(1S), \eta_{c}(2S)$ properties: B decays

- 2-D fit of angle θ vs. M(K_s K π) distributions is performed
- Interference between signal and non-resonant background

Marko Bracko: Meson spectroscopy at ee colliders

Erice school 2011, Erice, Sicily

BELLE

Ks

arXiv: 1105.0978 submitted to PLB

$\eta_{c}(2S)$: new decay modes in $\gamma\gamma$ reactions

Belle studied $\gamma \gamma \rightarrow \eta_c(2S) \rightarrow 6$ -prong with 923 /fb. 6-prong: 6π , $2K4\pi$, $4K2\pi$, $K_SK3\pi$.

- Only one exclusive mode ($K_S K \pi$) seen until recently
- Not seen in 4-prong final state: Belle EPJC 53, I (2008)
- Seen in 6-prong final states:

	M, MeV	Γ, MeV	Signif.	$\Gamma_{\gamma\gamma}\mathcal{B}, eV$
6π	$3638.9 \pm 1.6 \pm 2.3$	10.7 ± 4.9	8.5σ	$20.1 \pm 3.7 \pm 3.2$
$2K4\pi$	$3634.7 \pm 1.6 \pm 2.8$	< 13 @ 90%CL	6.2σ	$10.2\pm2.3\pm3.4$
$K_S K 3\pi$	$3636.5 \pm 1.8 \pm 2.4$	15.9 ± 5.7	8.7σ	$30.7\pm3.9\pm3.7$

$$\begin{split} M(\eta_c(2S)) &= 3636.9 \pm 1.1 \pm 2.5 \pm 5.0 \, \text{MeV} & \text{(possible interference} \\ \Gamma(\eta_c(2S)) &= 9.9 \pm 3.2 \pm 2.6 \pm 2.0 \, \text{MeV} & \text{with background)} \end{split}$$

Marko Bracko: Meson spectroscopy at ee colliders

$\eta_{c}(2S)$: new decay modes in $\gamma\gamma$ reactions

Marko Bracko: Meson spectroscopy at ee colliders

$\eta_{c}(1S) \& \eta_{c}(2S) - Update @ PDG2011$

	BESIII [2011] preliminary ψ(2S)→γη _c /η _c (2S)	Belle[2011] arXiv:1105.0978 B decays	BABAR[2011] PRD 84 012004 γγ fusion	PDG 2011
M(η _c), MeV/c²	2984.4±0.5±0.6	2985.4±1.5 ^{+0.2} -2.0	2982.2±0.4±1.4	2980.3 ± 1.2
Γ(η _c),MeV	30.5±1.0±0.9	35.1±3.1 ^{+1.0} -1.6	32.1±1.1±1.3	28.6 ± 2.2
<mark>Μ(η_c(2S)),Me</mark> V	3638.5±2.3±1.0	3636.1 ^{+3.9} -1.5 ^{+0.5} -2.0	3638.5±1.5±0.8	3637±4
Г(η _c (2S)),MeV	12 (fixed)	6.6 ^{+8.4} -5.1+2.6	13.4±4.6±3.2	14 ± 7

First observation of η_c(2S) in ψ(2S) radiative decay from BESIII

- Most precise measurement for η_c parameters is from BESIII
- Most precise measurement for η_c(2S) parameters is from BABAR γ γ fusion
- Hyperfine splitting: △M(1S) = 112.5 ± 0.8 MeV; △M(2S) = 47.6 ± 1.7 MeV

Spreads in measured masses and widths between different processes are getting smaller.

Exotic Charmonium-like States

Multiquark states

Molecular states

Loosely bound pair of charm mesons (,,g/pion exchange at short/long distances

Tetraquarks

Tightly bound diquark-diantiquark states 🏹

Charmonium hybrid states

States with excited gluonic degrees of freedom

Hadro-Charmonium

Exotic states:

Are not forbidden in SM; Have exotic J^{PC} (0⁺⁻, 1⁻⁺, 2⁺⁻,... forbidden for qq); exotic decay modes (not possible for qq); strange properties (widths,...); Multiquark states could also have non-zero charge [cucd], strangeness [cdcs] or both [cucs]

Compact charmonium states bound inside light hadronic matter

Threshold-effects

Virtual states at the threshold

Charmonium states with shifted masses due to nearby D^(*)D^(*) thresholds

Mixture of the above or something even more exotic?

The "good old" X(3872): discovery

•Confirmed soon by:

The X(3872) summary

- A narrow state discovered by Belle in $B^+ \to J/\psi \pi^+ \pi^- K^+$, S.-K.Choi et al.,PRL 91, 262001 (2003)
- Confirmed by BaBar, B.Aubert et al., PRL 93, 041801 (2004); at Tevatron: CDF, D.Acosta et al., PRL 93, 072001 (2004) and D0, V.M.Abazov et al., PRL 93, 162002 (2004)

Now also: CMS & LHCb

• Charged partner not found by BaBar, B.Aubert et al., PRD 71, 031501 (2005)

Determination of quantum numbers of X(3872)
➤ Evidence for X(3872)→J/ψγ established C = +1
[Belle arXiv:1105.0177; BABAR PRL 102 132001]

> X(3872) \rightarrow J/ $\psi\pi^{+}\pi^{-}$ by CDF \Rightarrow 1⁺⁺ or 2⁻⁺ [PRL 98 132002]

X(3872) not seen χ_{c1}γ, χ_{c2}γ and J/ψη modes indicate that X may be not a conventional cc state

➤ X(3872) →J/ψ ∞ by BABAR favors 2⁻⁺ [PRD 82 011101]

- Using full Belle Y(4S) data sample: 711 fb⁻¹
- Charged & neutral decays: B^{0,±} → K^{0,±} X

• Reference channel: $B^{0,\pm} \rightarrow K^{0,\pm} \psi'$ **ΔE**...., M(J/ψ π⁺π⁻) M ψ′**Ξ**ψ(2S) 300 151±15 events Events/0.010 GeV 200 100 M_{BC} /GeV $M(J/\psi \pi^+ \pi^-)/GeV$ ∆E/GeV \mathbf{R}^0 21.0±5.7 events n 0.400.80 1.20 $M(\pi^{+}\pi^{-}\ell^{+}\ell^{-}) - M(\ell^{+}\ell^{-})$ X from B^0, B^{\pm} $M(J/\psi \pi^+ \pi^-)/GeV$ M_{BC} /GeV ∆E/GeV are the same: $\Delta M_{X(3872)} = (-0.69 \pm 0.97(\text{stat}) \pm 0.19(\text{syst}))$ MeV. BR(B⁻ \rightarrow XK⁻) x BR(X \rightarrow J/ ψ $\pi^{+}\pi^{-}$) = (8.61 ± 0.82 ± 0.52)x10⁻⁶

 $BR(B^{0} \rightarrow XK^{0}) / BR(B^{-} \rightarrow XK^{-}) = (0.50 \pm 0.14 \pm 0.04)$

Erice school 2011, Erice, Sicily

PRD 84, 052004 (2011)

711 1/fb

Using full Belle Y(4S) data sample: 711 fb⁻¹

PRD 84, 052004 (2011) 711 1/fb

RFI I F

X(3872) mass in $\pi^+\pi^-J/\psi$ channel only

Belle result contains MC/data shift 0.92 \pm 0.006 MeV, fixed from reference channel $\psi^{\,\prime}$

		$ = 3871.46 \pm 0.19 MeV$
Experiment	X mass	VIX prev_WA
CDF 2	3871.61 ± 0.16 ± 0.19 MeV	Here former Belle measurement $3872.0 \pm 0.6 \pm 0.5$ MoV
BaBar (B ⁺)	3871.4 ± 0.6 ± 0.1 MeV	not considered anymore
BaBar (B ⁰)	3868.7 ± 1.5 ± 0.4 MeV	(superseded by new measurement)
D0	3871.8 ± 3.1 ± 3.0 MeV	"Binding Energy"
Belle (This result) Preliminary	3871.84 ± 0.27 ± 0.19 MeV	m(X)-m(D*0)-m(D0) becomes smaller:
World Average	3871.62 ± 0.19 MeV	<u>Old: ∧m = −0.32 + 0.35 MeV</u>
LHCb (new)	3871.96 ± 0.46 ± 0.10 MeV	New: $\Delta m = -0.17 \pm 0.36$ MeV
World Average	3871.67 ± 0.17 MeV	
again		New w/ LHCb:
M(D ⁰)+M(D* ⁰) PDG2010	3871.79±0.30 MeV	$\Delta m = -0.12 \pm 0.35 \text{ MeV}$

Reminder: Δm (deuteron) = -2.2 MeV

Using full Belle Y(4S) data sample: 711 fb⁻¹

PRD 84, 052004 (2011) 711 1/fb

RFI I F

X(3872) mass in $\pi^+\pi^-J/\psi$ channel only

Belle result contains MC/data shift 0.92 \pm 0.006 MeV, fixed from reference channel $\psi^{\,\prime}$

Experiment	X mass
CDF 2	3871.61 ± 0.16 ± 0.19 MeV
BaBar (B ⁺)	3871.4 ± 0.6 ± 0.1 MeV
BaBar (B ⁰)	3868.7 ± 1.5 ± 0.4 MeV
DO	3871.8 ± 3.1 ± 3.0 MeV
Belle (This result) Preliminary	3871.84 ± 0.27 ± 0.19 MeV
World Average	3871.62±0.19 MeV
LHCb (new)	3871.96 ± 0.46 ± 0.10 MeV
World Average	3871.67±0.17 MeV
M(D ⁰)+M(D* ⁰) PDG2010	3871.79±0.30 MeV

 ${<}M_{\rm X}{>}_{\rm prev_WA}{=}$ 3871.46 \pm 0.19 MeV

Here former Belle measurement 3872.0 ± 0.6 ± 0.5 MeV not considered anymore (superseded by new measurement)

"Binding Energy" $m(X)-m(D^{*0})-m(D^{0})$ becomes smaller: Old: $\Delta m = -0.32 \pm 0.35$ MeV New: $\Delta m = -0.17 \pm 0.36$ MeV

> New w/ LHCb: $\Delta m = -0.12 \pm 0.35$ MeV

Reminder: Δm (deuteron) = -2.2 MeV

New measurement of width

PRD 84, 052004 (2011) 711 1/fb

RF/

Previous best limit

Γ_{X(3872)} < 2.3 MeV (90% CL)

- 3-dim fits are sensitive to natural widths narrower than resolution $<\sigma>\simeq 4$ MeV because of constraints (m_{BC}, ΔE)
- Method validated with ψ width $\Gamma_{\psi'}=0.52\pm0.11$ MeV (PDG 0.304±0.009 MeV) \rightarrow bias 0.23 ± 0.11 MeV
- procedure for upper limit: width in 3-dim fit fixed
 n_{signal} and n_{peaking BG} floating
 → calculate likelihood
- $\Gamma_{X(3872)} < 0.95 \text{ MeV} + \text{bias}$

Marko Bracko: Meson spectroscopy at ee colliders

X⁺(3872) → J/ψ π⁺π⁰ search

PRD 84, 052004 (2011)

711 1/fb

Search for a charged X(3872) partner: X(3872) is a singlet or triplet?

Marko Bracko: Meson spectroscopy at ee colliders

Angular analysis

PRD 84, 052004 (2011) 711 1/fb

BFI I F

Marko Bracko: Meson spectroscopy at ee colliders

X(3872): radiative decays

$$\frac{BR(X \to \gamma J/\psi)}{BR(X \to J/\psi \,\pi\pi)} = 0.14 \pm 0.05$$

$$\mathbb{R}\left(B^{+} \rightarrow X(3872)K^{+}\right) \times BR\left(X \rightarrow \gamma J/\psi\right) = (1.8)$$

$$(3872)K^+$$
 $\times BR(X \rightarrow \gamma J/\psi) = (1.8 \pm 0.6 \pm 0.1) \times 10^{-6}$

$$\frac{BR(X \to \gamma \psi')}{BR(X \to \gamma J/\psi)} = 3.5 \pm 1.4$$
$$\frac{BR(X \to \gamma \psi')}{BR(X \to J/\psi \pi \pi)} = 1.1 \pm 0.4$$

 $BR(B^+ \to X(3872)K^+) \times BR(X \to \gamma J/\psi) = (2.8 \pm 0.8 \pm 0.1) \times 10^{-6}$

Important implications:

- Imply even C-parity of X(3872)
- Give more information on X(3872) nature

Rad. quarkonia decays in B mesons

Mode	Events	Significance
B⁺→X(3872) K⁺	30.0 ^{+8.2}	4.9 σ
⁸⁰ →X(3872) K _s ⁰	$5.7^{+3.5}_{-2.8}$	2.4 σ

 $BR(B^+ \rightarrow X(3872)K^+) \times BR(X \rightarrow \gamma J/\psi)$ = (1.78 ± 0.46 ± 0.12)×10⁻⁶

 $\frac{BR(X \to J/\psi \gamma)}{BR(X \to J/\psi \pi \pi)} = 0.22 \pm 0.05$

 $BR(B^{0} \rightarrow X(3872)K^{0}) \times BR(X \rightarrow \gamma J/\psi)$
< 2.4×10⁻⁶ @ 90%CL

Rad. quarkonia decays in B mesons

Marko Bracko: Meson spectroscopy at ee colliders

Rad. quarkonia decays - summary

Belle: X(3872) \rightarrow J/ $\psi\gamma$ clearly observed

Most precise measurement, agrees with previous evidence

Belle: No X(3872) $\rightarrow \psi' \gamma$ signal observed Disagrees with Babar's evidence

Results on $\mathcal{B}(B^+ \to K^+X(3872)) \cdot \mathcal{B}(X(3872) \to R\gamma), 10^{-6}$

Group	Belle	BaBar
$\int \mathcal{L}dt$, fb ⁻¹	711	424
$R = J/\psi$	$1.78^{+0.48}_{-0.44} \pm 0.12$	$2.8\pm0.8\pm0.1$
$R=\psi$	< 3.45	$9.5\pm2.7\pm0.6$

From the absence of $X(3872) \rightarrow \psi' \gamma$ it may not have a large $c\bar{c}$ admixture with a $D^{*0}\bar{D}^0$ molecular component

Pure molecular interpretation of X(3872) is back?

Charged charmonium-like states (Z[±])

Observation of Z⁺(4430) state

New state observed in $B \rightarrow K \pi^{\pm} \psi$ (2S) decays

Marko Bracko: Meson spectroscopy at ee colliders

Erice school 2011, Erice, Sicily

PRL 100, 142001(2008) 657 BB
Observation of Z⁺(4430) state

 $Z(4430)^{\scriptscriptstyle +} \rightarrow \psi(2S)\pi^{\scriptscriptstyle +}$:

Charged state that decays like charmonium (= charged charmonium-like state)

Br($\overline{B}^{0} \rightarrow K^{-}Z^{+}(4430)) \times Br(Z^{+}(4430) \rightarrow \pi^{+}\psi') = (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$

Z⁺(4430) update: Dalitz analysis

Marko Bracko: Meson spectroscopy at ee colliders

Erice school 2011, Erice, Sicily

Z⁺(4430) update: Dalitz analysis

Sum of A, C, E slices (= K*'s veto) :

Original result confirmed (w K* veto) & Z[±](4430) parameters updated (w/o veto):

PRD(RC) 80, 031104(2009)

657 BB

$$M = (4443 + 15 + 19) MeV/c^{2}$$
$$\Gamma = (107 + 86 + 74) MeV$$

Width larger than original (45MeV), but uncertainties are also large

Systematics studies/crosscheks:

- Z[±](4430) signif. in different fit models always > 5.4σ
- Not a $\mathbf{B} \rightarrow \psi' \mathbf{K}_{3}^{*}$ (1780) reflection

More Z⁺ states: Z⁺(4050) & Z⁺(4250)

3.5 3.6

M(y/wv)

More Z⁺ states: Z⁺(4050) & Z⁺(4250)

Erice school 2011, Erice, Sicily

PRD 78, 072004 (2008)

Z⁺ states: Summary

- No news on Z(4430) seen by Belle in $B \to K\pi^+\psi'$ with 605 fb⁻¹, S.-K.Choi et al., PRL 100, 142001 (2008)
- Not seen by BaBar with 413 fb⁻¹, also in $J/\psi\pi^+$ decay, B.Aubert et al., PRD 80, 031104 (2009)
- Confirmed by Belle in Dalitz plot reanalysis of the same data sample, R.Mizuk et al., PRD 80, 031104 (2010), $M = 4443^{+15+19}_{-12-13}$ MeV, $\Gamma = 107^{+86+74}_{-43-56}$ MeV
- No statistical inconsistency between Belle and BaBar
- With the same 605 fb⁻¹ Belle observes in B^0 decays two $\chi_{c1}\pi^-$ states Z(4050) and Z(4350), R.Mizuk et al., PRD 80, 031104 (2010)
- Non-zero charge \Rightarrow exotic, non- $q\bar{q}$ nature

Other experiments will have to resolve the issue

Bottomonium(-like) states

bbsystem

Puzzles of Y(5S) decays

44

bb system: Motivation for h_b search

Observation of e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}h_{c}$ by CLEO-c arXiv:1104.2025

h_b (nP) states

Observation of Y(5S) $\rightarrow h_{b}$ (nP) $\pi\pi$

 \Rightarrow reconstruct $\mu^+\mu^-$ in addition to $\pi^+\pi^-$ to suppress background

Raw MM($\pi^+\pi^-$) spectrum from $\Upsilon(5S)$

Observation of Y(5S) $\rightarrow h_{b}$ (nP) $\pi\pi$

Background Subtracted Results 121.4 fb⁻¹ :

Marko Bracko: Meson spectroscopy at ee colliders

Observation of Y(5S) \rightarrow h_b (nP) $\pi\pi$

Mass measurements

 $\begin{array}{c} \text{Deviations from CoG of } \chi_{bJ} \text{ masses} \\ h_b(1\text{P}) & 1.62 \pm 1.52 \text{ MeV/c}^2 \\ h_b(2\text{P}) & 0.48 \stackrel{+1.57}{_{-1.22}} \text{ MeV/c}^2 \end{array} \right\}$

consistent with zero, as expected

Ratio of production rates

$$\frac{\Gamma[\Upsilon(5S) \rightarrow h_b(nP) \pi^+ \pi^-]}{\Gamma[\Upsilon(5S) \rightarrow \Upsilon(2S) \pi^+ \pi^-]} = \begin{cases} 0.407 \pm 0.079^{+0.043}_{-0.076} & \text{for } h_b(1P) \\ 0.78 \pm 0.09^{+0.22}_{-0.10} & \text{for } h_b(2P) \end{cases}$$

S(h_b) = 0 \Rightarrow spin-flip
no spin-flip

Process with spin-flip of heavy quark is not suppressed No h_b signal at $\Upsilon(4S)$

⇒ Mechanism of $\Upsilon(5S) \rightarrow h_b(nP) \pi^+\pi^-$ decay is exotic! This motivates us to study resonant substructure of this process

Resonant substructure of Y(5S) $\rightarrow h_{b}$ (nP) π

Fit function: $|BW(s, M_1, \Gamma_1) + ae^{i\phi}BW(s, M_2, \Gamma_2) + be^{i\psi}|^2 \frac{qp}{\sqrt{s}}$

arXiv: 1105.4583

$Z_{b}(10610)$ and $Z_{b}(10650)$

Fit results

1

[preliminary]

Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M(Z_b(10610)), {\rm MeV}/c^2$	$10609\pm3\pm2$	$10616\pm2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	$10605.1 \pm 2.2 {}^{+3.0}_{-1.0}$	$10596\pm7{}^{+5}_{-2}$
$\Gamma(Z_b(10610)), \text{ MeV}$	$22.9\pm7.3\pm2$	$21.1 \pm 4^{+2}_{-3}$	$12.2\pm1.7\pm4$	$11.4^{+4.5}_{-3.9}{}^{+2.1}_{-1.2}$	$16^{+16}_{-10}{}^{+13}_{-4}$
$M(Z_b(10650)),{\rm MeV}/c^2$	$10660\pm 6\pm 2$	$10653 \pm 2 \pm 2$	$10652\pm2\pm2$	$10654.5 \pm 2.5 {}^{+1.0}_{-1.9}$	$10651 \pm 4 \pm 2$
$\Gamma(Z_b(10650)), {\rm MeV}$	$12\pm10\pm3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9\pm2.6^{+4}_{-2}$	$20.9 {}^{+5.4}_{-4.7} {}^{+2.1}_{-5.7}$	$12^{+11}_{-9}{}^{+8}_{-2}$
Rel. amplitude	$0.59 \pm 0.19^{+0.09}_{-0.03}$	$0.91 \pm 0.11 \substack{+0.04 \\ -0.03}$	$0.73 \pm 0.10 \substack{+0.15 \\ -0.05}$	$1.8^{+1.0}_{-0.7}{}^{+0.1}_{-0.5}$	$1.3^{\pm 3.1}_{-1.1}{}^{\pm 0.4}_{-0.7}$
Rel. phase, degrees	$53\pm61^{+5}_{-50}$	$-20\pm18^{+14}_{-9}$	$6\pm24^{+23}_{-59}$	$188^{+44}_{-58}^{+44}_{-2}$	$255^{+58}_{-72}^{+58}_{-183}$

Masses, widths, relative amplitudes are consistent Relative phases are swapped for Y and h_b final states ← expectation from a 'molecular' model

> <mark>Z_b(10610)</mark> M=10608.4±2.0 MeV Γ=15.6±2.5 MeV

<mark>Z_b(10650)</mark> M=10653.2±1.5 MeV Γ=14.4 ± 3.2 MeV

$Z_{b}(10610)$ and $Z_{b}(10650)$: Summary

Summary and conclusions

Charmonium(-like) states :

Following the exciting X(3872) discovery ...

- ... more information on its properties from radiative decays
- ... New exotic state observed by Belle in $B \rightarrow \psi(2S)\pi^{\pm}K$ decays:

Z(4430)⁺ (charged charmonium-like state)

- ... also ${\pmb Z_1}^+$ and ${\pmb Z_2}^+$ in $B^0 \,{\rightarrow}\, K^{\text{-}} \pi^+ \chi_{\text{c1}}$ decays
- New charmonium[-like] spectroscopy established at 4-5GeV? Good candidates for molecular states; multiquarks; hybrids; ... X(3872); Z(4430)⁺, Z₁⁺ and Z₂⁺; Y's; ...
- Same type of XYZ spectroscopy seems to be going on in the b-quark sector?
 As the data taking/processing finished last year, final results are now soming from Belle ...
 B-factories finished for some final answers charm-fact., LHC, or we will have to wait for new experiments

Supplementary material

Barrent Asymmetric-energy e⁺e⁻ colliders

Belle & BaBar Detectors

KEKB/Belle and PEP-II/BaBar integr. luminosity

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

BEPCII/BESIII

Charmonium-like States (unconventional)

State	m (MeV)	$\Gamma (MeV)$	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	$3871.52{\pm}0.20$	$1.3{\pm}0.6$	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$	Belle $[85, 86]$ (12.8), BABAR $[87]$ (8.6)	2003	OK
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$	CDF $[88-90]$ (np), DØ $[91]$ (5.2)		
				$B \to K(\omega J/\psi)$ $B \to K(D^{*0}\overline{D^0})$	Belle $[92]$ (4.3), BABAR $[93]$ (4.0) Bollo $[04, 05]$ (6.4), BABAR $[06]$ (4.0)		
				$B \to K(D D^{-})$ $B \to K(\gamma J/\psi)$	Belle [92] (4.0) , BABAR [97, 98] (3.6)		
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
				$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	?*+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
				$e^+e^- \rightarrow J/\psi \; ()$	Belle [54] (5.0)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \rightarrow \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$	Belle $[104]$ (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \rightarrow K(\pi^+ \chi_{c1}(1P))$	Belle $[105]$ (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	?*+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	?*+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle $[103]$ (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \rightarrow K(\pi^+ \chi_{c1}(1P))$	Belle $[105]$ (5.0)	2008	NC!
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
					CLEO [110] (5.4)		
				$a^+a^- \rightarrow (\pi^+\pi^- I/a/)$	Belle $[104]$ (15)		
				$e^+e^- \rightarrow (\pi^0\pi^0 J/\psi)$	CLEO $[111]$ (11) CLEO $[111]$ (5.1)		
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+\psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \rightarrow \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle $[114]$ (5.8)	2007	NC!

Hadronic width of $\eta_c(2S)$ must be smaller than $\eta_c(1S)$

Potential model for $\eta_c(2S)$ width prediction not reliable, because close to $\overline{D}D$ threshold \rightarrow would be nice test for Lattice QCD

$$\Gamma({}^{1}S_{0} \to gg) = \frac{32\pi}{3} \frac{\alpha_{S}^{2}}{m_{c}^{2}} |\psi(r=0)|^{2}$$

3 gluon decay not possible (parity)

$X(3872) \rightarrow J/\psi \pi^+\pi^- update$

PRD 84, 052004 (2011) 711 1/fb

Reference Analysis: $B \rightarrow K\psi'$, $\psi' \rightarrow J/\psi \pi^+\pi^-$

3-dim fit in beam constrained mass, J/ $\psi \pi^+ \pi^-$ mass and ΔE at first, fit reference signal ψ'

 \rightarrow fix core Gaussian and tail Gaussian for resolution parameters

X(3872) → J/ψ π⁺π⁻ update

PRD 84, 052004 (2011) 711 1/fb

Analysis of X(3872) \rightarrow J

3-dim fit

with fixed resolution parameters from $\psi^{\,\prime}$

Mass MC/data shift +0.92 \pm 0.06 MeV, measured and fixed from ψ' mass

X(3872): radiative decays

- □ Radiative transistions of charmonia: well predicted by quark models
- □ Good way to probe charmonium interpretation of X(3872)

X(3872): rad. decays - interpr. problems

- $\Box \frac{BR(X \to \gamma \psi')}{BR(X \to \gamma J/\psi)} = 3.5 \pm 1.4$ is problematic for molecular interpretation of X(3872)
- Components of molecule: DD* (+ J/ψρ + J/ψω)
 Decay: vector-meson dominance and light-quark annihilation

- □ Such decay pattern implies: $BR(X \rightarrow \gamma \psi') < BR(X \rightarrow \gamma J/\psi)$
- □ Solution: admixture of charmonium component (for example $\chi_{c1}(2P)$)
 - \Rightarrow Decrease X(3872) ${\rightarrow}\gamma J/\psi$ rate through destructive interference

□ Radiative decays are worth studying further

Rad. quarkonia decays in B mesons

More info: Z⁺(4430) Dalitz analysis

Different fit models and the significance of Z(4430)⁺:

TABLE I: Different fit models that are used to study systematic uncertainties and the significances of the $2(4430)^+$.

	Model	Significance
1	default*	6.4 <i>0</i>
2	no $K_0^*(1430)$	6.6 <i>0</i>
3	ao $K^{*}(1680)$	6.6 <i>0</i>
4	release constraints on κ mass $\&$ width	6.3 <i>a</i>
5	$\texttt{new} \ K^* \ (J=1)$	6.0 <i>a</i>
б	$\texttt{new} \ K^* \ (J=2)$	5.5 <i>a</i>
7	add non-resonant $v(2S)K^+$ term	6.3 <i>a</i>
8	add non-resonant $\iota_1(2S)K^+$ term, release constraints on κ mass $\&$ width	5.8 <i>a</i>
9	add non-resonant $\iota^{\cdot}(2S)K^{-}$ term, new K^{*} $(J=1)$	5.5 <i>a</i>
10	add non-resonant t $(2S)K^+$ term, new K^+ $(J=2)$	5.4 <i>a</i>
11	add non-resonant $\iota^{\cdot}(2S)K^{-}$ term, no $K^{*}(1410)$	6.3 <i>a</i>
12	add non-resonant $\psi(2S)K^+$ term, no $K^*(1680)$	6.6 <i>0</i>
13	LASS parameterization of S-wave component	6.5 <i>a</i>

Significance of Z(4430)⁺ in different fit models is always larger than 5.4σ

Z₁⁺ & **Z**₂⁺ in $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}$ decays: fit

$Z_1^+ \& Z_2^+$: fit fractions

	One	One Z ⁺		Two Z^+	
Contribution	Fit fraction	Signif.	Fit fraction	Signif.	
$Z^+_{(1)}$	$(33.1^{+8.7}_{-5.8})\%$	10.7 σ	$(8.0^{+3.8}_{-2.2})\%$	5.7σ	
Z_2^+	_	_	$(10.4^{+6.1}_{-2.3})\%$	5.7 σ	
κ	$(1.9\pm1.8)\%$	2.1σ	$(3.6\pm2.6)\%$	3.5σ	
K*(892)	$(28.5\pm2.1)\%$	10.6 σ	$(30.1\pm2.3)\%$	9.8 σ	
$K^{*}(1410)$	$(3.6\pm4.4)\%$	1.3σ	$(4.4\pm4.3)\%$	2.0σ	
$K_0^*(1430)$	$(22.4\pm5.8)\%$	3.4σ	$(18.6\pm5.0)\%$	4.5 σ	
$K_{2}^{*}(1430)$	$(8.4\pm2.7)\%$	5.2σ	$(6.1\pm2.9)\%$	5.4 σ	
$K^{*}(1680)$	$(5.2\pm3.7)\%$	2.2σ	$(4.4\pm3.1)\%$	2.4σ	
$K_{3}^{*}(1780)$	$(7.4\pm3.0)\%$	3.6 σ	$(7.2\pm2.9)\%$	3.8 σ	
	110.5%	-	92.8%		
	There is	There is small net interference effect			

ss system: Y(2175) confirmed by Belle PRD 80, 031101(R) (2009) 673 fb-1 Observed in $\Phi \pi^{+}\pi^{-}$ system in a dominant $Y(2175) \rightarrow \Phi f_{0}(980)$ decay mode by BaBar (PRD 74, 091103 (2006)), confirmed by BES (PRL 100, 102003 (2008)) Belle: $e^+e^- \rightarrow \Phi \pi^+\pi^-$ and $e^+e^- \rightarrow \Phi f_0(980)$ cross section measurements with ISR $\sigma(\phi f_0(980))$ $\sigma(\phi\pi^+\pi^-)$ 0.8 $\phi(1680)$ 5(4f₀(980)) (nb) (ຊິມ) (ມ_ູ່ມຢູ) (ມູ_ມມູງ) ເ $1689 \pm 7 \pm 10$ MeV $\Gamma = 211 \pm 14 \pm 19$ MeV 0.5Y(2175) 0.2 $M = 2079 \pm 13^{+79}_{-\infty}$ MeV 0 $\Gamma = 192 \pm 23^{+25}_{-61}$ MeV 2.52.6 2.82.4 1.52 2.2Ec.n. (GeV) E_{c.M.} (GeV) Two incoherent BW terms One BW term interfering with a non-resonant term Results are consistent with BaBar/BES; (included in Y(2175) width is larger, but with larger errors systematics) Φ(1680) and Y(2175) widths are both ~200 MeV An excited 1⁻⁻ ss state or an Y ?

C Double cc̄ production:J/ψ & C=+1 state

Double cc production: update PRL 100, 202001(2008)

Used the established method to look for the

 $D^{(*)}\overline{D}^{(*)}$ resonances in $e^+e^- \rightarrow J/\psi \ D^{(*)}\overline{D}^{(*)}$ with larger statistics ...

- Reconstruct $J/\Psi+D^{(*)}$: Accompanying $\overline{D}^{(*)}$ peaks seen in $M_{recoil}(J/\Psi D^{(*)})$ distr.
- Processes tagged in this way: J/ΨDD, J/ΨDD*, J/ΨD*D*, J/ΨD*D, J/ΨD*D*, J/ΨD*D*

(all > 5σ)

693 fb⁻¹

	$J/\psi D_{ m rec}$		$J/\psi D^*_{ m rec}$	
	Ν	\mathcal{N}_{σ}	Ν	\mathcal{N}_{σ}
$e^+e^- \rightarrow J/\psi D\overline{D}$	162 ± 25	7.6		
$e^+e^- \rightarrow J/\psi D^*\overline{D}$	159 ± 28	6.5	$19.0 {+6.3 \atop -5.3}$	5.8
$e^+e^- \rightarrow J/\psi D^*\overline{D}^*$	173 ± 32	5.6	$47.2 {+}^{+}_{-} {}^{8.5}_{-}_{7.8}$	8.4

• Constrain $M_{recoil}(J/\Psi D^{(*)})=M_{nominal}(\overline{D}^{(*)})$ and look at $M_{recoil}(J/\Psi) = M_{recoil}(D^{(*)}\overline{D}^{(*)})$ distributions ...

- Possible assignments: η_c(3S),η_c(4S),χ_{c0}(3P) (but masses 100-150 MeV too high)
- Needed to be done: angular analysis; search in $\gamma\gamma \rightarrow D\overline{D}^*$, $D^*\overline{D}^*$
Be⁺e⁻→J/ψc̄c cross section @ ~10.6 GeV

- Model-independent measurements of e⁺e⁻→J/ψcc cross section
 - Simultaneous fit for all double charmonium final states (below open-charm threshold)

CB e⁺e⁻→J/ψc̄c cross section @ ~10.6 GeV

• Model-independent measurements of $e^+e^- \rightarrow J/\psi c \overline{c}$ cross section

PRD 79, 071101 (2009) 673 fb⁻¹

TABLE II. Cross sections for the processes $e^+e^- \rightarrow J/\psi X$, $J/\psi c\bar{c}$, and $J/\psi X_{\text{non-}c\bar{c}}$ ([pb]), and characteristics of the J/ψ spectra (ϵ_{Pet} , α_{hel} , and α_{prod}); χ^2/n_{dof} values for the corresponding fits are listed in parentheses.

	$J/\psi X$	$J/\psi c \bar{c}$	$J/\psi X_{\mathrm{non}\text{-}c\bar{c}}$
σ	1.17 ± 0.02	0.74 ± 0.08	0.43 ± 0.09
τ_{Pet}	1.19 ± 0.01	0.73 ± 0.05	0.48 ± 0.07
EPet	$0.16 \pm 0.01(8.9)$	$0.10 \pm 0.02(0.6)$	$0.32^{+0.16}_{-0.12}(1.6)$
α_{hel}	$0.03 \pm 0.03 (0.6)$	$-0.19^{+0.25}_{-0.22}(1.0)$	$0.41^{+0.60}_{-0.45}(1.2)$
α_{prod}	$0.69 \pm 0.05 (3.3)$	$-0.26^{+0.24}_{-0.22}(0.5)$	$5.2^{+6.1}_{-2.4}(0.3)$

Conclusions (new constraints for theoretical models):

• $e^+e^- \rightarrow J/\psi c \overline{c}$ is the dominant mechanism for J/ψ production in e^+e^- annihilations

• $e^+e^- \rightarrow J/\psi c \overline{c}$ is dominated by $c \overline{c}$ fragmentation into open charm

(only (16±3)% from double charmonium)

• $\sigma(e^+e^- \rightarrow J/\psi \ c\overline{c}) \ / \ \sigma(e^+e^- \rightarrow J/\psi \ X_{non-cc}) \sim O(1)$

Study of 1⁻⁻ states with ISR

 $\gamma_{\rm ISR}$

e⁻.

e⁺

- Initial state radiation(ISR) gives access to J^{PC} = 1⁻⁻ states
- Two main characteristics of ISR physics at B-factories:
 - Continuous ISR spectrum gives access to the wide \sqrt{s} range
 - High luminosity "compensates" for the emission of hard photons

Sensitivity comparable to direct energy scan (e.g. CLEO-c, BES III)

• $Y(4260) \rightarrow J/\psi \pi^+\pi^-$ observed via ISR by BaBar (confirmed first by CLEO)

Study of 1⁻⁻ states in $e^+e^- \rightarrow \gamma_{ISR} J/\psi \pi^+\pi^-$

➡ Using BaBar's approach

- Study of $e^+e^- \rightarrow \gamma_{ISR} J/\psi \pi^+\pi^-$ also by Belle
- Reconstruction: π⁺π⁻ & J/ψ(→e⁺e⁻,μ⁺μ⁻) (no extra tracks allowed; γ_{ISR} not detected)
- Missing(recoil) mass identifies ISR:

$$M_{rec} = \sqrt{(E_{cms} - E_{J/\psi\pi^{+}\pi^{-}}^{*})^{2} - p_{J/\psi\pi^{+}\pi^{-}}^{*}}$$

- Fit to M(J/ψπ⁺π⁻) with two coherent BW curves
- Y(4260) is confirmed also by Belle
- New Y(4008) resonance? Not seen by BaBar

			-	S I MAR I UDDATE preliminary 3
	State	$\mathbf{M}, \ \mathrm{MeV}/\mathbf{c^2}$	$\Gamma_{\rm tot},~{ m MeV}$	$\overset{80}{\underset{70}{\underset{10}{10}{\underset{10}{10}{10}{10}{\underset{10}{10}{10}{10}{10}{10}{10}{10}{10}{10}$
BELLE	$\mathbf{Y}(4008)$	$4008\pm40^{+114}_{-28}$	$226 \pm 44 \pm 87$	2 60 344±39 events
	$\mathbf{Y}(4260)$	$4259\pm8^{+2}_{-6}$	${\bf 88 \pm 23^{+6}_{-4}}$	
	$\mathbf{Y}(4260)$	${\bf 4252 \pm 6^{+2}_{-3}}$	${\bf 105 \pm 18^{+4}_{-6}}$	
	$\mathbf{Y}(4260)$	$4284^{+17}_{-16}\pm4$	$73^{+39}_{-25}\pm 5$	
BELLE	$\mathbf{Y}(4260)$	$\boxed{ 4247 \pm 12^{+17}_{-32} } \\$	$108\pm19\pm10$	3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 $m(\pi^+\pi^-J/\psi)(GeV/c^2)$

Study of 1⁻⁻ states in $e^+e^- \rightarrow \gamma_{ISR} \psi' \pi^+ \pi^-$

Similar approach also for:

- Study of $e^+e^- \rightarrow \gamma_{ISR} \psi(2S) \pi^+\pi^-$
- Reconstruction: π⁺π⁻ & ψ(2S)(→π⁺π⁻J/ψ(→e⁺e⁻,μ⁺μ⁻)) (no extra tracks allowed; γ_{ISR} not detected)
- Missing(recoil) mass identifies ISR:

$$M_{rec} = \sqrt{(E_{cms} - E_{\psi(2S)\pi^{+}\pi^{-}}^{*})^{2} - p_{\psi(2S)\pi^{+}\pi^{-}}^{*}}$$

- Fit to M(ψ(2S)π⁺π⁻) with two coherent BW curves
- Belle's Y(4360) resonance: close to BaBar's Y(4325), but narrower
- New Y(4660) resonance by Belle? (Seen also by BaBar?) PRL 98, 212001 (2007)

Exclusive D^(*)D^(*) cross sections w. ISR

- e⁺e⁻→ D<u>D</u>, D<u>D</u>*, D*<u>D</u>* cross sections measured with ISR
- D<u>D</u>*, D*<u>D</u>*: using partial reconstruction; γ_{ISR} detected
 D<u>D</u>: fully reconstructed; γ_{ISR} used if detected
- Recoil mass is again used to identify ISR events
- Method is well established
- Difficult interpretation in terms of resonances (there are many maxima/minima, model dependent coupled-channels and threshold effects...)

1^{..} Y states: What are they?

Difficult interpretation Charmonium options:

- Y states above D<u>D</u> threshold but don't match well the peaks in D^(*)D^(*) cross-sections
- Large widths for ψππ transition: not likely for conventional cc
- No cc assignments available in this mass region (there are too many 1⁻⁻ states)

Other options:

- Charm-meson threshold effects
- DD₁ or D^{*}D₀ molecules
- cqcq tetraquarks
- ccg hybrids predicted@4.2-5GeV DD1 mode should dominate
- Coupled-channel effects

$e^+e^- \rightarrow \gamma_{ISR} \psi' \pi^+ \pi^-$: BaBar & Belle combined fit

Combined fit to BaBar and Belle data on $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

Z. Q. Liu,^{1,3} X. S. Qin,^{1,2} and C. Z. Yuan^{1,*}

FIG. 4: The results of the fit to $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ data from Belle and BaBar. The solid curve show the best fit with three coherent Breit-Wigners: the Y(4260), Y(4360), and Y(4660), and the dashed curve is the signal shape of the Y(4260).