

International School of Nuclear Physics, 32nd Course Erice, September 22, 2010

Description of (Type Ia) Supernova Explosions

Friedrich Röpke

DFG Emmy Noether Junior Research Group Max-Planck-Institut für Astrophysik, Garching, Germany

W. Hillebrandt, S. Woosley, S. Sim, I. Seitenzahl, D. Kasen, A. Ruiter, P. Mazzali, M. Kromer, R. Pakmor, M. Fink, F. Ciaraldi-Schoolmann, P. Edelmann, S. Benitez

Example: Type Ia supernova explosions

astronomical (empirical) classification

SN fractions

volume-limited (Li+, 2010)

Model: energetics

energy release: $\sim 10^{51}$ erg

energy source:

- collapse to neutron star?
- release of gravitational binding energy:

$$U_{ ext{grav}}\sim -rac{3}{5}rac{GM_{\odot}^2}{10\, ext{km}}\sim -10^{53}\, ext{erg}$$

sufficient to power supernova!

...but no compact object found in SNe Ia remnants

Model: energetics

energy release: ~10⁵¹ erg

energy source:

- nuclear energy
- ▶ no H, He in SNe Ia spectra → exploding star: C+O WD
- energy release due to burning of C+O material to ⁵⁶Ni: 7.86 × 10¹⁷ erg/g

Chandrasekhar-mass (1.4 M $_{\odot}$) WD: 2 × 10⁵¹ erg

radioactive decay of ⁵⁶Ni leads to bright optical display

Astronomical classification

astronomical (empirical) classification

Astrophysical classification

physical classification

Nucleosynthesis and chemical evolution

SNe Ia significantly contribute to cosmic cycle of matter:

- main contributor to iron group elements in the Universe
- about 1/3 of intermediate mass elements (Si to Ca)
- ▶ p-process site? \rightarrow contribution to the galactic evolution of p-nuclei (e.g. Kusakabe et al., 2006) \rightarrow project with C. Travaglio (Turin)

SN Ia Cosmology

SNe Ia

- established accelerated expansion of the present Universe
- probe Dark Energy
- Iuminosity distance reconstruct H(z) model-independently (Benitez+, in prep.)

Union2 Sample Vs. DGP Models

SN Ia cosmology

standard candles?

standardizablesystematics?evolutionary effects?

1.8823.96

SN Ia basics

What we (believe to) know...

- thermonuclear explosion of WD (Hoyle & Fowler 1960) consisting of C+O material
- ⁵⁶Ni as main product (Truran 1967, Colgate & McKee, 1969) decays radioactively, powers optical display (e.g. Kuchner+ 1994)

(potentially misleading) prejudices...

- homogeneity fixed mass of exploding star?
- Ni masses necessary to explain brightness of typical SNe Ia?
- consistency of iron group yields with solar abundances?

The great unknowns...

- progenitor system
- single or multiple explosion mechanisms

use explosion models (combined with radiative transfer, population synthesis) to find out

How to explode a WD?

single C+O WD: inert object trigger explosion by

spontaneous self-ignition...
requires particular conditions

hitting it with a hammer...
requires external compression

stellar binary companion necessary

How to explode a WD?

single C+O WD: inert object trigger explosion by

spontaneous self-ignition...
requires particular conditions

Figh density at core of WD
reached by growing WD to M
Mached By Growing WD to M
Mached By Growing WD to M
Mached By Growing WD to M
Mass fixed to ~1.4 M

hitting it with a hammer...
requires external compression

non-M_{ch} model

stellar binary companion necessary

M_{Ch} model

flame ignition due to thermonuclear runaway

number/distribution of ignition sparks?

Friedrich Röpke, MPA

Explosive C+O burning

fuel density ahead of combustion front determines nucleosynthesis:

- ¹²C+¹²C reaction rate: $\propto T^{20}$
- electron-degenerate material: high thermal conductivity

burning proceeds in thin fronts (flames)

flame width (mm to cm) \ll scales of WD (radius ~ 2000 km)

described by discontinuity approximation

Flame propagation and burning

Detonations

Flame propagation and burning

Turbulent combustion in SNe Ia

 subsonic bring WD material ahead of flame out of equilibrium pre-expansion

laminar flames: Mach ~10⁻² cannot catch up with WD expansion nuclear energy release insufficient

 buoyancy instabilities lead to turbulent combustion

t = 0.025 sec

t = 0.200 sec

t = 0.600 sec

t = 1.000 sec

t = 1.600 sec

t = 3.000 sec

Nucleosynthetic postprocessing

simplified description of burning in hydro (only 5 species)

nucleosynthesis postprocessing from tracers based on large reaction network (C. Travaglio et al., 2004; FR et al., 2006)

 radiation transfer: preliminary, low resolution (Kromer & Sim)

Scaled flux

SN Ia sub-classes and fractions

volume-limited (Li+, 2010)

Delayed detonation model

detonation of M_{ch} WD after pre-expansion in initial deflagration phase (Khokhlov 1991)

FR & Niemeyer, 2007 Mazzali et al., 2007

- requires deflagration-to-detonation transition (DDT) of flame
- probably possible at low densitites (late phase of explosion) if turbulence still strong enough (FR, 2007; Woosley 2007; Woosley+, 2009)

Synthetic observables

radiation transfer for 44 2D explosion models (Kasen+, 2009) compared with SN 2003du

Width-luminosity relation

angle averaged light curves (Kasen+, 2009)

Friedrich Röpke, MPA

SN Ia sub-classes and fractions

volume-limited (Li+, 2010)

$\textbf{Sub-M}_{\text{Ch}} \textbf{ explosions}$

- explosion simulation (Fink+, 2007, 2010)
- minimum He-shell masses (Bildsten+, 2007)

$\textbf{Sub-M}_{\text{Ch}} \textbf{ explosions}$

- explosion simulation: (Fink+, 2007, 2010)
- minimum He-shell masses (Bildsten+, 2007)

C+O core detonation triggers robustly

Sub-M_{Ch} explosions

- radiation transfer (Kromer+, 2010)
- iron group elements produced in He shell detonation (Ti, Cr, etc) may be problematic

2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Erice 2010

Friedrich Röpke, MPA

$\textbf{Sub-M}_{\text{Ch}} \textbf{ explosions}$

- changing C abundance in He shell may help (Kromer+, 2010)
- bare sub-M_{ch} detonations produce promising results (Sim+, 2010)

2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SN Ia sub-classes and fractions

volume-limited (Li+, 2010)

Violent WD-WD mergers

(Pakmor+, 2010)

- inspiral and merger: 3D SPH code (GADGET3)
- 2 WDs: $M_1 = M_2 = 0.9 M_{\odot}$

Friedrich Röpke, MPA

Violent WD-WD mergers

- explosion: 3D MPA SN Ia code (LEAFS)
- detonation after T>2.8 GK reached @ $\rho = 3.8 \ 10^6 \text{ g/cm}^3$

Friedrich Röpke, MPA

Erice 2010

Violent WD-WD mergers

radiation transfer: 3D monte carlo (ARTIS)

light curves

spectrum

SN Ia sub-classes and fractions

volume-limited (Li+, 2010)

Conclusion

Open questions

- Which models do contribute?
- Which explains bulk of SNe Ia?

tools to answer questions have been developed:

population	2D/3D hydrodynamic	nucleosynthesis	radiative	SN Ia
synthesis	explosion models	postprocessing	transfer	observations

- perhaps comparison with observations will tell
- uncertainty in nucleosynthesis, radiation transfer
- ...or all goes back to rates/population synthesis for progenitor systems?
- degeneracy in observables?