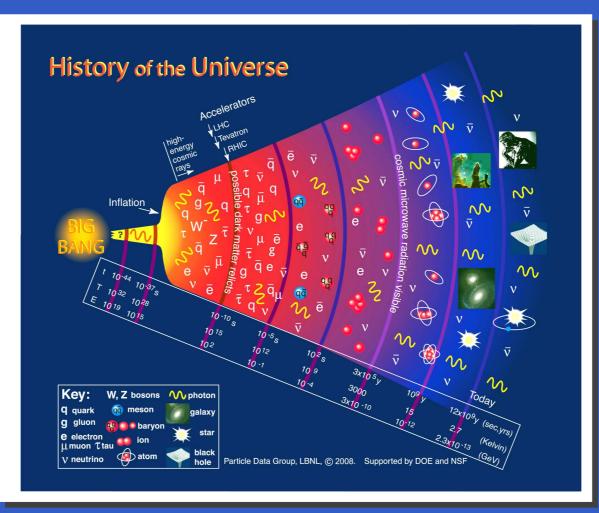
The Cosmological QCD Phase Transition Revisited

Jürgen Schaffner-Bielich

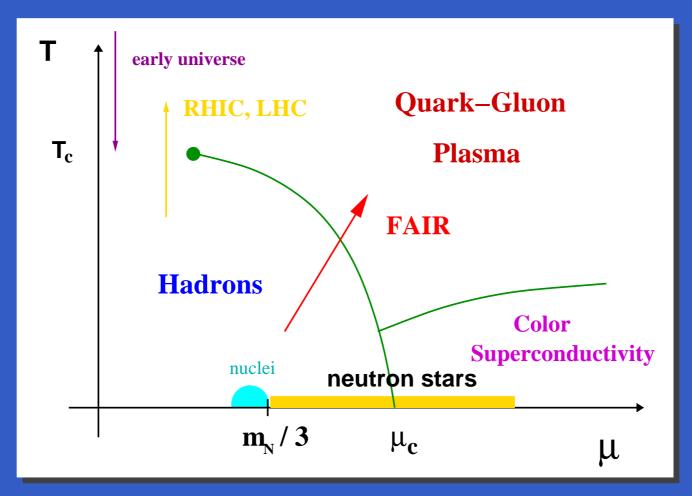
Institute for Theoretical Physics and Heidelberg Graduate School for Fundamental Physics and ExtreMe Matter Institute EMMI

International School of Nuclear Physics 32nd Course: Particle and Nuclear Astrophysics Erice, Sicily, September 16-24, 2010 Work done with Tillmann Boeckel


Boeckel and JSB, PRL 105 (2010) 041301 Boeckel, Hempel, Sagert, Pagliara, Sa'd, JSB, JPG 37 (2010) 094005

> and Simon Schettler (to be published)

Outline


- Standard cosmology
- QCD phase transition with a little inflation
- Ingredients: Affleck-Dine baryogenesis, metastable vacuum, bubble nucleation
- Implications and possible signals:
 - large-scale structure
 - WIMPs and mini black holes
 - cosmological magnetic fields
 - gravitational wave background
- Summary

History of the early universe

- Early universe: temperature increases with scale parameter as a^{-1}
- at t = 1s to 3 minutes: BBN (T = 0.1 to 1 MeV)
- at $t \approx 10^{-5}$ s: QCD phase transition ($T \approx 170$ MeV)
- at $t \approx 10^{-10}$ s: electroweak phase transition ($T \approx 100$ GeV)

Phase Transitions in QCD

early universe at small baryon density and high temperature

- neutron star matter at small temperature and high density
- first order phase transition at high density?
- probed by heavy-ion collisions with CBM@FAIR!

Standard cosmology

from microwave background radiation and big bang nucleosynthesis:

$$n_B/s \sim n_B/n_\gamma \sim \mu/T \sim 10^{-9}$$

note: baryon number per entropy is conserved \implies early universe evolves along $\mu/T \sim 10^{-9} \sim 0$ \implies crossover transition, nothing spectacular, no cosmological signals

Friedmann equation for radiation dominated universe:

$$H^2 = \frac{8\pi G}{3}\rho \sim g(T)\frac{T^4}{M_p^2}$$

g(T): effective number of relativistic degrees of freedom at THubble time (true time $t = 3t_H$ for radiation dominated universe):

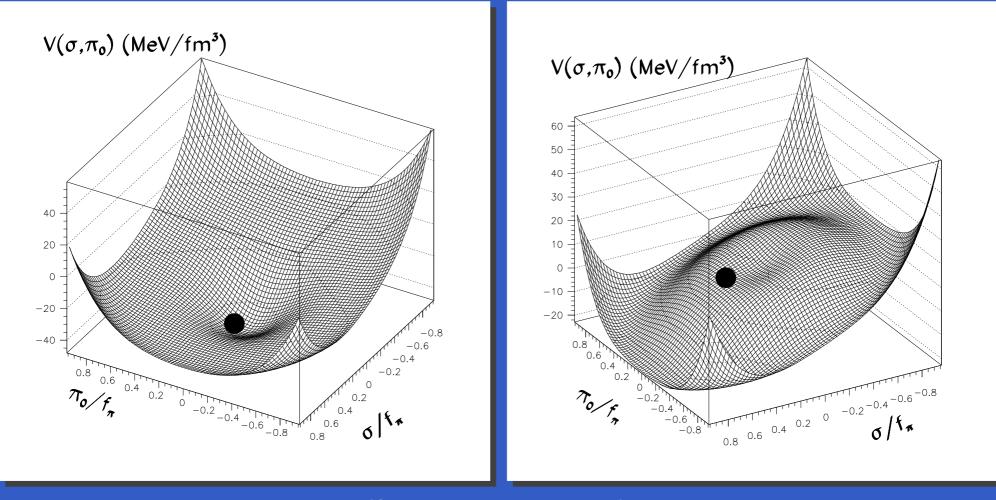
$$t_H = \frac{1}{H} \sim g^{-1/2} \frac{M_P}{T^2} \Longrightarrow \frac{t}{1 \sec} \sim \left(\frac{1 \text{ MeV}}{T}\right)^2$$

– p.6

A little inflation at the QCD phase transition

what happens if the early universe passes through a first order phase transition?

- is this possible? \implies Yes! no contradiction with present data
- could this be observable? \implies Yes! by gravitational waves 1st order phase transition \implies false metastable vacuum \implies de Sitter solution \implies (additional small) inflationary period


$$H = \dot{a}/a \sim M_p^{-1}\rho_{\rm v}^{1/2} = H_{\rm v} = \text{const.} \rightarrow a \sim \exp(H_{\rm v} \cdot t)$$

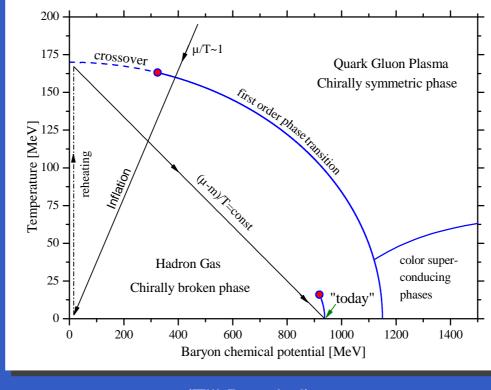
just a few e-folds are enough (standard inflation needs $N \sim 50$):

$$\left(\frac{\mu}{T}\right)_f \approx \left(\frac{a_i}{a_f}\right)^3 \left(\frac{\mu}{T}\right)_i$$

Hence $(\mu/T)_i \sim \mathcal{O}(1)$ for just $N = \ln (a_f/a_i) \sim \ln(10^3) \sim 7$ e-folds (first order phase transition by a large lepton asymmetry: Schwarz, Stuke 2009)_ p.7

First-order phase transition: linear σ model

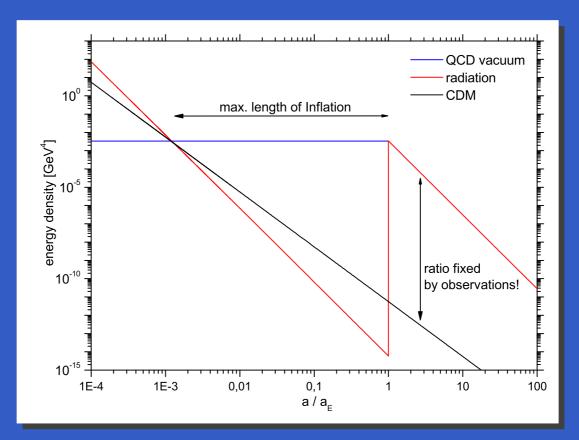
(Scavenius, Dumitru 1999)


 \bullet potential within the linear σ model at finite temperature

 \blacksquare left plot: high T, right plot: low T, system being trapped in false vacuum state

 \checkmark possibility of a 'quench' at finite μ , two scalar fields in QCD – hybrid inflation?

p.8


A little inflation in the QCD phase diagram

(Till Boeckel)

- start with $\mu/T \sim 1$ (possible for e.g. Affleck-Dine baryogenesis)
- universe trapped in false vacuum at the transition line
- supercooling and dilution with $\mu/T = \text{const.}$
- \blacksquare decay to the true vacuum state \rightarrow reheating to $T \sim T_c$ so that $\mu/T \sim 10^{-9}$
- then standard cosmological evolution to BBN

A little inflation – evolution of densities

(Boeckel and JSB, arXiv:0906.4520)

- ${}_{-}$ energy density falls as a^{-4} until $ho \sim \Lambda_{
 m QCD}^4$
- then $\rho = const. \rightarrow inflationary period starts$
- reheating at the end of inflation
- \bullet maximum length of inflation for scale parameter a from CDM density $\sim 10^3$

Power Spectrum of Dark Matter

- \bullet dark matter mass within horizon at $T_c \approx 170$ MeV: $10^{-9} M_{\odot}$
- boosted by little inflation by $(a_f/a_i)^3 \approx 10^9$ so that mass scales of up to $1M_{\odot}$ are affected
- **•** additional effect for modes $k_{ph} < H$ at the beginning of inflation
- two scales involved: $H^2 \propto \rho_v \sim \text{const.}$ and $\dot{H} = -4\pi G(\rho + p) = -4\pi G(\rho_{dm} + 4\rho_r/3) \propto (a_i/a)^q$ where $q = 3 \dots 4$
- three spectral regimes:
 - $(k_{ph}/H)_i > a_f/a_i$: always subhubble
 - $a_f/a_i > (k_{ph}/H)_i > (a_i/a_f)^{q/2}$: intermediate
 - $(k_{ph}/H)_i < (a_i/a_f)^{q/2}$: unaffected
- highest mass scale affected is $M_{max} \sim 10^{-9} M_{\odot} (a_f/a_i)^{3q/2} \sim (10^6 10^8) M_{\odot}$
- relation to cuspy core, subhalo issues of structure formation?

WIMPs and Black Holes

freeze-out of weakly interacting massive particles (WIMPs):

 $\Omega_{CDM} \sim \sigma_{\text{weak}} / \sigma_{\text{ann.}}$

- ρ_{CDM} will be larger by $(a_f/a_i)^3$ during freeze-out before inflation
- need substantially reduced annihilation cross section, correspondingly reduced production cross section
- can be checked @LHC! (if SUSY particles are not found)
- primordial black hole production due to collapsing bubbles:

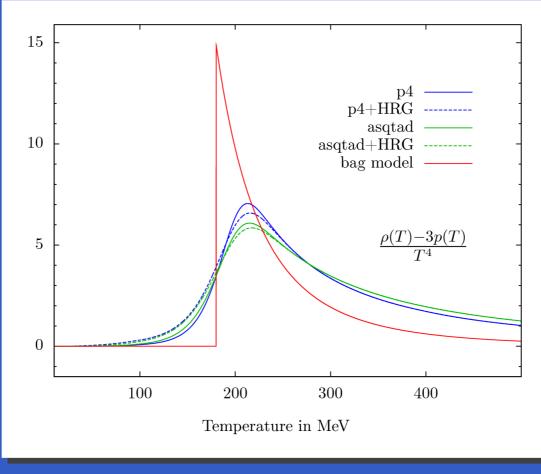
 $M_{bh} \sim M_{hubble} \sim 1 M_{\odot}$

as the total energy density after inflation is involved (Jedamzik 1997; Kapusta, Springer 2007)

Tensor perturbations and QCD trace anomaly

- crucial input for tensor perturbations in GR: trace anomaly of QCD!
- EoM for tensor perturbation amplitude $v_k = a \cdot h_k$ in Fourier space (gauge invariant):

$$v_k''(\eta) + \left(k^2 - \frac{a''}{a}\right)v_k(\eta) = 0$$


where

$$\frac{a''}{a} = \frac{4\pi G a^2}{3} \left(\rho - 3p\right)$$

only input needed: QCD trace anomaly

 use several lattice parameterizations, compare with simple bag model

QCD trace anomaly

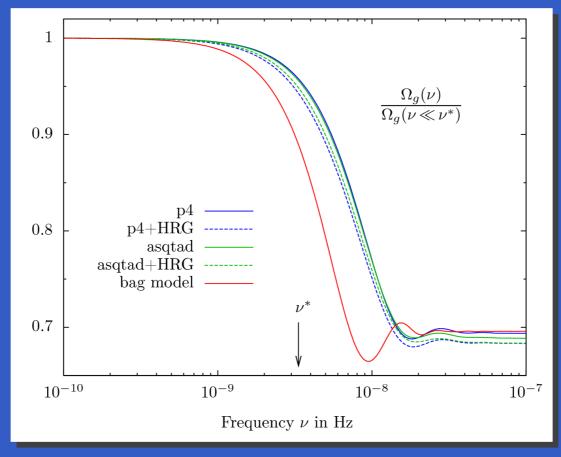
(Simon Schettler)

 parameterization of lattice data with improved staggered fermion actions (asqtad and p4) and physical strange quark masses, with and without a hadron resonance gas (HRG)
 (Bazavov et al., Bielefeld-BNL/RIKEN-Columbia collaboration 2009)

Gravitational wave background from QCD phase transition

- energy density in gravitational wave background: $\Omega_g(k) = \frac{1}{\rho_c} \frac{d\rho_g}{d \ln k}$
- mode h_k is damped by 1/a after horizon entry
- entropy conservation: $ga^3T^3 = const. \rightarrow H \sim T^2g^{1/2} \sim g^{-1/6}a^{-2}$
- \checkmark as $\Omega_g \sim k^2 a_{in}^2 = H_{in}^2 a_{in}^4 \sim g_k^{-1/3}$, so

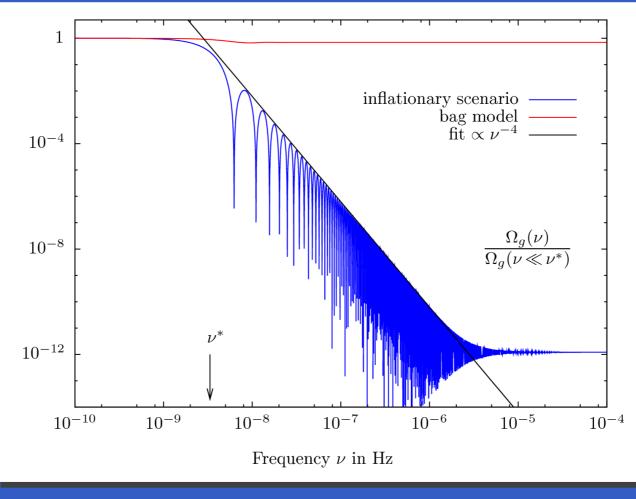
$$\frac{\Omega_g(\nu \gg \nu^*)}{\Omega_g(\nu \ll \nu^*)} = \left(\frac{g_f}{g_i}\right)^{1/3} \sim 0.7$$


(Schwarz 1998)

step in amplitude at frequency scale given by (redshifted) horizon scale at the transition point

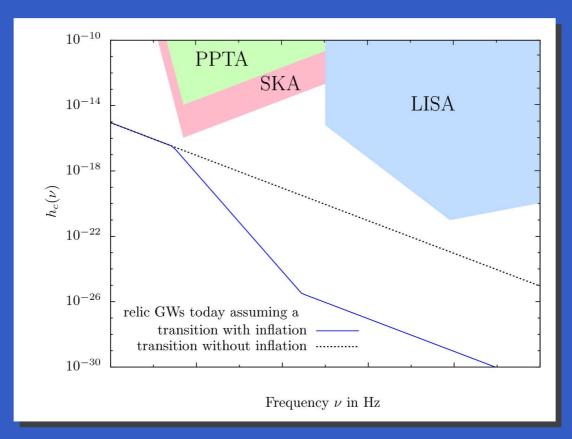
$$u_{\text{peak}} \sim H_c \cdot T_{\gamma,0}/T_c \sim T_c/M_p \cdot T_{\gamma,0} \sim 10^{-7} \text{ Hz}$$

maximum amplitude $h \sim a/a_0 \sim 10^{-12}$


A step in the gravitational wave background

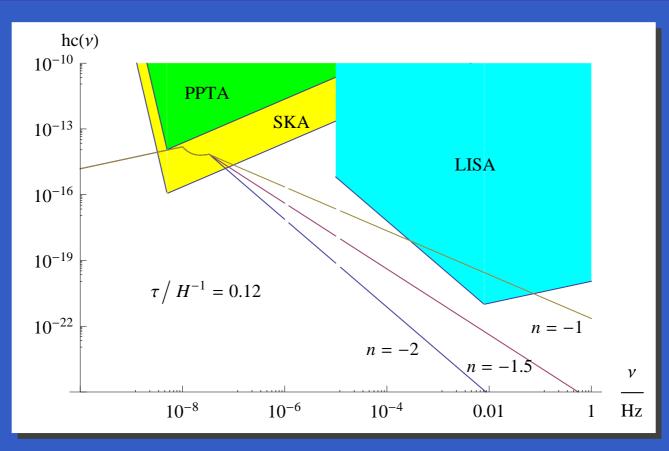
(Simon Schettler)

- \bullet step in gravitational wave background around $\nu \sim 10^{-8}~{
 m Hz}$
- step in spectrum of about $(g_f/g_i)^{1/3} \sim 0.7$
- rather insensitive to details of the phase transition (Schwarz 1998)


Spektrum of gravitational waves for a little inflation

(Simon Schettler)

- amplitudes are exponentially suppressed during inflation as $h \sim 1/a \sim \exp(H \cdot t)$
 - gravitational wave background drops as ν^{-4}


Observations of gravitational wave background

(Simon Schettler and Till Boeckel)

- gravitational wave amplitude versus frequency
- gravitational waves measurable with pulsar timing (PPTA and SKA) or space-based interferometers (LISA), limits from Jenet et al. 2006
- step frequency in the amplitude close to highest sensitivity for pulsar timing

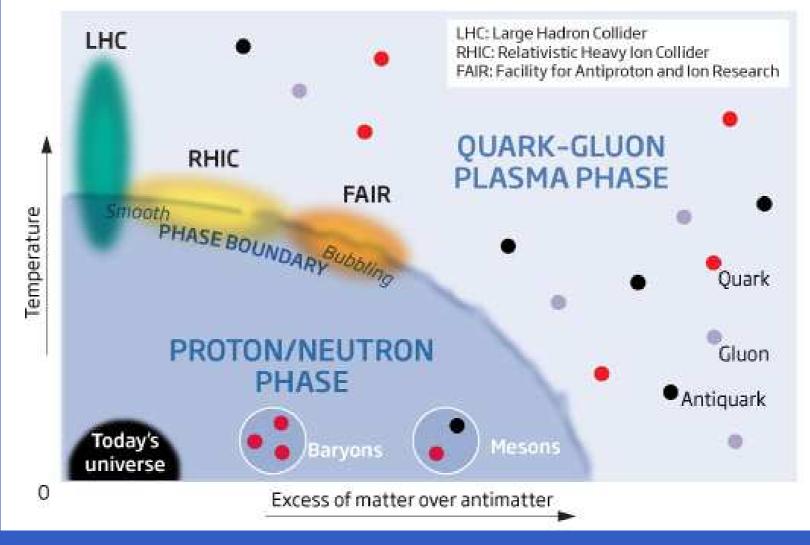
Gravitational waves from bubble collisions

(Boeckel et al. JPG 37 (2010) 094005)

- first order transition produces tensor perturbations \rightarrow gravitational waves
- amplitude scales as $h(\nu) \propto \nu^{-1/2}$ for $\nu < H$ (white noise) and as $h(\nu) \propto \nu^{-2\dots-1}$ for $\nu > H$ (multi bubble collisions) (Kamionkowski, Kosowsky, Turner 1994; Huber, Konstandin 2008)

Summary

- first order transition could have happened in the early universe
- need large initial μ/T and a metastable false vacuum state
- large-scale structure modified up to $M \sim 10^9 M_{\odot}$ (without QCD inflation only up the horizon mass $\sim 10^{-9} M_{\odot}$)
- cold dark matter density is diluted by 10^{-9} \rightarrow need different WIMP annihilation cross section as $\Omega_{\rm CDM} \sim \sigma_{\rm weak} / \sigma_{\rm ann}$ or larger WIMP mass (probed by LHC!)
- generation of the seeds of (extra)galactic magnetic fields:
 → possible within the standard model again
- modified gravitational wave background: observable with pulsar timing and LISA


Epilogue: the bubbling universe

Rachel Courtland on "Big Bang Part II: The Big Boil" New Scientist, May 2010

Big bang II: the 'new scientist picture'

Just a phase the universe went through @NewScientist

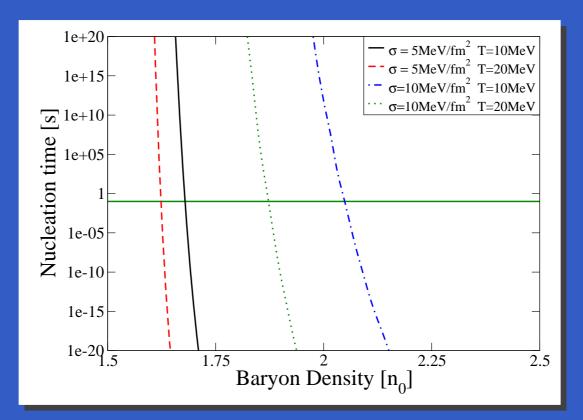
As the early universe cooled, the quark-gluon plasma underwent either a smooth or a "bubbling" phase change to form the matter we see today. Experiments are set to probe the transition at various ratios of matter to antimatter

End of phase transition by bubble nucleation

bubble of new phase grows if they exceed a critical bubble size free energy:

$$\Delta F = -\frac{4\pi}{3}R^3\Delta p + 4\pi R^2\sigma$$

with a critical bubble size of $R_c = 2\sigma/\Delta p$, nucleation rate:


 $\Gamma = P_0 \exp\left(-\Delta F/T\right)$ with $P_0 \sim T^4$

depends crucially on surface tension σ and pressure difference Δp :

$$\frac{\Delta F_c}{T} = \frac{16\pi\sigma^3}{3T(\Delta p)^2} = \frac{16\pi}{3} \left(\frac{\sigma}{200 \text{MeV fm}^{-2}}\right)^3 \left(\frac{200 \text{MeV}}{T}\right) \left(\frac{200 \text{MeV fm}^{-3}}{\Delta p}\right)$$

exponential suppression! in general $\sigma = \sigma(T)$ as the barrier vanishes for low T (ensures a graceful exit!)

Bubble nucleation timescales and surface tension

(Mintz, Fraga, Pagliara, JSB 2009)

failure to nucleate $\tau_{nucl} > t_{hubble}$ for $\sigma > 120$ MeV/fm² (MIT bag model with $B^{1/4} = 145$ MeV)

(Jenkovszky, Sysoev, Kämpfer 1990; Csernai, Kapusta 1992; Mintz, Fraga, Pagliara, JSB 2010) surface tension in QCD: $\sigma = 50 - 150$ MeV/fm² or smaller or larger . . . (Voskresensky, Yasuhira, Tatsumi 2003; Palhares, Fraga 2010)

Seeds for magnetic fields

- primordial magnetic fields produced by bubble collisions in first order phase transition (Cheng, Olinto 1994)
- charge dipole layer at surface, high baryon density contrast
- \blacksquare magnetic field can be $B_{QCD} \sim 10^8 10^{10} \text{ G}$
- amplified by MHD turbulence to equipartition value $B_{eq} = \sqrt{8\pi T^4 v_f^2} \sim 10^{12} \text{ G}$ (Sigl, Olinto, Jedamzik 1997)
- little inflation scenario boosts magnetic fields by higher density and larger baryon diffusion length
- can explain presently observed (extra)galactic magnetic field strength $B_{obs} \sim 0.1 1 \mu \text{G}$ works for GUT and QCD phase transition

(Caprini, Durrer, Fenn 2009)

Producing gravitational waves with bubbles

energy emitted in gravitational waves (quadrupole formula):

 $E_{GW} \sim G \stackrel{\dots}{Q}^2 \tau$

with duration of collision τ and separation of bubbles $d \sim \tau$

$$\ddot{Q} \sim \frac{\rho_{\rm v} \cdot d^3 \cdot \tau^2}{\tau^3} \sim \rho_{\rm v} \tau^2$$

energy relative to total energy:

$$\frac{E_{\rm GW}}{E_{\rm v}} \sim \frac{G\rho_{\rm v}^2 \tau^2}{\rho_{\rm v} \tau^3} \sim G\rho_{\rm v} \tau^2 \sim \left(\frac{\tau}{H^{-1}}\right)^2$$

limit from Parkes Pulsar Timing Array PPTA: $\tau/H^{-1} < 0.12$ will be improved by full PPTA data set and by Square Kilometre Array SKA in the future