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I. Introduction

SXN =510 YN_o+2e + 20,

* Conserves the leptonic number
e Compatible with massive or massless Dirac/Majorana neutrinos

* Experimentally observed (Ti2~10'%-2! y)
* Within the Standard Model

2X N $§+2 Yn_o+2e

* Violates the leptonic number conservation
* Neutrinos are massive Majorana particles

* Except one controversial claim (Klapdor-Kleingrothaus
et al. PLB 586, 198,2004) has not been experimentally
observed (Tin~10%y)

e Beyond the Standard Model
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S LB CLEELIE o Neutrino oscillation observations (solar, atmospheric and reactors) establish that
the neutrinos have a finite mass —>» NEW PHYSICS BEYOND THE SM.

* From neutrino oscillation the absolute mass scale cannot be measured (only
differences and mixing angles)

* Neutrinoless double beta decay rates depend directly on the effective neutrino
mass so there are several experiments running or projected devoted to search for
this process

252 H. Ejiri { Progress in Particle and Nuclear Physics 64 (2010) 249-257

Table 1
Limits on neutrino-less double 3~ decays. Qgg: Q value for the 07 — 07 ground state transition. G™: kinematical factor (phase space volume) in units of
107" y=1, T{%, - half-life limits in units of 10** y and {m,.): limit on the effective v mass in units of eV.

Isotope Qggs (MeV) B T (10%4) {m,) (eV) Future experiments

4276 4.46 =0.014 <7.2-45 CANDLES

2039 0.44 >19(22) <0.35(0.32) GERDA

2039 0.44 =16 <033-1.35 MAJORANA

2992 1.89 =0.36 =09-16 S-NEMO MOON

3.034 3.17 =1.1 <0.45-0.93 MOON CaMoOy4

2.804 3.24 =0.17 =17 COBRA CdWO,

2529 2.86 =3 <046 CUORE

2467 3.03 =0.44 <18-52 EX0 KamLAND BOREXINO
3.368 134 =0.018 <17-24 S-NEMO SNO+ DCBA
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e Quasiparticle Random Phase Approximation in different versions:
QRPA, RQRPA, SRQRPA. (Tubingen group; Jyuvaskyla“group)

* Interacting Shell Model -ISM- (Strasbourg-Madrid collaboration)



. Introduction

Different ways to deal with:
- Finding the best initial and final ground states.

- Handling the transition operator (inclusion of most relevant terms, corrections,
approximations, etc.).

Some remarks about these methods:

- Calculations with limited single particle bases.

- Interactions fitted to the specific region (ISM) or to each nucleus individually
(rest).

- Difficulties to include collective degrees of freedom.

- Problems with particle number conservation.
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|. Introduction . . . o
Starting from the weak lagrangian that describes the process some approximations

are made:
|. Non-relativistic approach in the hadronic part.

2. Closure approximation in the virtual intermediate state

3. Nucleon form factors taken in the dipolar approximation.

4.Tensor contribution is neglected.
5. High order currents are included (HOC).

6. Short range correlations are included with an UCOM correlator.




|. Introduction . . . o
Starting from the weak lagrangian that describes the process some approximations

are made:
|. Non-relativistic approach in the hadronic part.

2. Closure approximation in the virtual intermediate state

3. Nucleon form factors taken in the dipolar approximation.

4.Tensor contribution is neglected.
5. High order currents are included (HOC).

6. Short range correlations are included with an UCOM correlator.

- Find the initial and final 0" states within the GCM+PNAMP method (axial calculations)
- Evaluate the transition operators between these states




2. Method:
GCM
+PNAMP

@ Effective nucleon-nucleon interaction (Density Dependent):
Gogny force (D1S) that is able to describe properly many phenomena along

the whole nuclear chart.
2

V(1,2) =Y e Y (W; + B;P? — HiPT PR
=1

+iWy (o1 + ag)k: X 0(77 — rg)k +t3(1 + 2o P7 Jo(ri s

—l_VCoulomb (Fl , 7:)2 )

@ Method of solving the many-body problem:
First step: Particle Number Projection (before the variation) of HFB-
type wave functions.

Second step: Simultaneous Particle Number and Angular
Momentum Projection (after the variation).

Third step: Configuration mixing within the framework of the
Generator Coordinate Method (GCM).



2. Method:
GCM
+PNAMP

Intrinsic state: Solve |®) HFB states —>» 0 (EN’Z [@(Q»])
the PN-VAP
equations with the <q)|[§[ﬁ>NpZ|q>>

Gogny DIS interaction ENANp) | = 1—— 1 1. P
ogny DIS i io [|®)] @ PN D70 b (19)) -

Particle number and angular
momentum projected state: IMK;NZ;q) =

General form (GCM state): IM;NZo) =

Z I;NZ I;NZ;o \r1; NZ

Hill-Wheeler-Griffin

equation (GCM
q ( )NI?Z? = (IMK;NZ;q|IMK';NZ;q)

B R BV N Z; o)+ e

—> generalized eigenvalue problem

|[©)=|®)

=0

A\ (@[Q|)
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2. Method:
GCM
+PNAMP

Intrinsic state: Solve ‘(I)> HFB states —>» (EN’Z [|cf)(q)>]) .
the VAP-PN

equations with the o
Gogny DIS interaction ERe (= (PIHPT P”|®)

Particle number and angular
momentum projected state: IMK;NZ;q) =

General form (GCM state):

2 : I;NZ I;NZio\rI;NZ
(HKqK’q’ - E NKqK’q’
K/q/

Hill-Wheeler-Griffin

equation (GCM
q &= NENZ | = (IMK;NZ;q[IMK';NZ;{)

HiNZ., = (IME;NZ;qH|IIMK';NZ;¢) +eps N2

—> generalized eigenvalue problem
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Intrinsic state: Solve
the VAP-PN

equations with the
Gogny DIS interaction

Particle number and angular
momentum projected state:

General form (GCM state):

2 : I;:NZ I;:NZ;onrI;NZ
(HK(]K/C]/ — E NKqK/q/
K/q/

Hill-Wheeler-Griffin

equation (GCM) B ) /
= (IMK;NZ;q|IMK';NZ;q)

= (IMK;NZ;q|H|IMK';NZ;q') + e 8K N2

—> generalized eigenvalue problem
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Intrinsic state: Solve
the VAP-PN

equations with the
Gogny DIS interaction

Particle number and angular
momentum projected state:

General form (GCM state):

Solving HWG |. Diagonalization of N—I NZ  LNZ I:NZ I:NZ
. . KqK'q’ K’ rA = N\ qu;A
equation: the norm overlap: Kra
I; NZ

U g
2. Natural basis: [ATMNZY =y A \IMEK;NZ:q) :n N nlNZ

max
I;NZ

3. Normal eigenvalue N Z 1t A TN Zs TN 7 NZ-o ~I:NZ:
& EA |H|’I’N Gy — il TGy
problem:
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|. Axial states K = 0 Z G?\;Nizi5U|AQ5NiZi>
2. Angular momentum [ = ( i i

3. Ground states 0 = ()

4. Quadrupole deformations ¢ = @20

2. Method:
GCM




|. Axial states K = ( QONiZiso | AO:N: Z;
é.ch:dethod: 2. Angular momentum [ = ( Z Ai A >

+PNAMP

—
3. Ground states 0 = 0

. |A05Nfo>
4. Quadrupole deformations ¢ = @20 f

TRANSITIONS: M = (0110772101 ) = (0; Ny Zf|OPP10; N Z;) =
O;N;Zs\ ™ /A OsN;Zp ) AOUBB| A O;Ni Zin AO;N:i Zs
S (RN A OP I AN RN =S
Aphi qiq i\ g
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O;N;Z¢ Ug. A
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3. Results:
GCM+PNAMP
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- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found
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3. Results:
GCM+PNAMP

48Ca 76Ge BZSe 96Zr 1OOMO11GCd 1248n 128-|-e 130-|-e 136Xe 150Nd

- Small contribution of Fermi compared to Gamow-Teller.
- Small value for A=150 transition due to the difference in deformation.
- Small value for A=48 due to the small value of the strength of the operator.




TABLE I: Difference between theoretical and experimental ()
values, kinematical phase space factors, NME and predicted

half-lives for several Ov(33 decaying nuclei assuming (mgg) =
0.5 eV.

3. Results: Nucleus Qtheo — Qexp Go1
GCM+PNAMP (MeV)  (x107" y 1)

BCa 0.265 6.52
6Ge 0.271 0.64

*?Se —0.366 2.83
%17 92 580 597 - Good agreement between

experimental and theoretical Q-values
1000\ 1.879 4.68 P <

1.365 5.08
—0.830 2.79
—0.564 0.18
—0.348 4.49
—1.027 4.68
—0.380 21.74




- The structure is related to the
pairing energy (particle-particle) of
the nuclei involved in the transition

3. Results: .
GCM+PNAMP - Maxima of the strength

correspond to maxima in pairing

energy

- In agreement with seniority

arguments (increasing seniority
decreases NME)

- Pairing energy and NME involve
similar Wick theorem’s
contractions in this formalism
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3. Results:
GCM+PNAMP

e GCM+PNAMP ¢ IBM-2
m ISM * PHFB

48C8. 76Ge 8289 962r 100M0116Cd 1248n 128-|-e 130-|-e 136)(e 150Nd

QRPA (Jy): M.
Kortelainen, J. Suhonen,
PRC 75, 051303(R)
(2007) and PRC 76,
024315 (2007)

QRPA(Tu): F. Simkovic
et al., PRC 77, 045503
(2008)

ISM: J. Menendez et al.,
PRL 100, 52503 (2008)

IBM-2:J. Barea, F.
lachello, PRC 77,
045503 (2008)

PHFB: K. Chaturvedi et
al. PRC 78, 054302
(2008)

- Higher values than the ones predicted by ISM calculations (larger valence space, lower seniority
components).
- For A=76, 82, 128, 150 we predict smaller values than the ones given by QRPA and/or IBM while
for A=96, 100, | 16, 124, 130, 136 larger values are obtained.
- Consistent results with the rest of the models. Notice that we are using the same interaction for
all the nuclei.
- Further studies are needed to understand what is missing in the different models.




4. Summary
and
Conclusions

e First calculations of neutrinoless double beta decay using GCM+PNAMP with
the Gogny DS interaction.

* First calculations with Particle Number Projection for different number of
particles in bra and ket states.

* Formalism equivalent to a pairing term in the multi-reference EDF formalism.

 Explicit inclusion of deformation and shape mixing.

* Axial calculations with parity and time reversal conservation.




4. Summary
and
Conclusions

* Transition operators favor similar deformation for mother and granddaughter
nuclei.

* Fermi contributions are smaller than Gamow-Teller.

* The structure can be understood studying the p-p channel of the nuclei
involved in the transition.

e For A=76,82,96, 100, 116, 124, 128, 130, | 36 values between 4.1-5.6 are
obtained

e For A = |50 the difference between deformation of the initial and final states
lowers the value of the NME.

* For A = 48 the small pairing correlations in Ca and Ti produces a small NME.

* Results of the same order of magnitude than ISM, QRPA and IBM are obtained.

e Similarities and differences between different models will be investigated
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