Direct Dark Matter Search CRESST

J.Jochum Eberhard Karls Universität Tübingen

Kepler Center for Astro and Particle Physics

Dark Matter - Evidence

Ðark Matter

$$\Omega_{Mat} > \Omega_{Lum} \approx 0.01$$

there must be more matter in the universe than we see

Cosmic Microwave Background - Matter-Density Ω_{matter}

Anisotropy:

Angular scale => geometry, Ω_{tot}

Intensities => gravitational potentials, matter densities

- gravitation Ω_{matter} - coupling to radiation Ω_{baryon}

$$\Omega_{matter} = 0.27$$

$$\Rightarrow \Omega_{matter} \gg \Omega_{lum} \approx 0.01$$

mostly Dark Matter

0.044

đ

 $\Rightarrow \Omega_{matter} >> \Omega_{baryon}$

Structure in the Universe and Neutrinos

Matter in the Universe - Composition

Dark search for Matter physics beyond the Standard Model ~85% of the mass Ω_{mat} of the universe is unknown non-baryonic

observations in Cosmology

Particle Physics

new elementary particles

QCD: Axions

supersymmetry: <u>Neutralino</u> $\chi - a\tilde{\gamma} + b\tilde{Z}^0 + c\tilde{H}_1^0 + d\tilde{H}_2^0$ Gravitino, Axino

perfect particle Dark Matter candidates (WIMP)

WIMP - direct detection

<u>W</u>eakly <u>I</u>nteracting <u>M</u>assive <u>P</u>articles = WIMPs

Jark Matter

elastic scattering on nuclei in a detector

- nuclear recoils: reduced efficiency for charge and/or light production
 - mass 50 GeV ~ 1000 GeV
 speed relative to earth 270 km/s

 $(\sim \text{our speed going around the galaxy})$

 \Rightarrow a few keV of energy only

- cross section $\sigma_{\chi} < 10^{-36} cm^2$
- locale WIMP-density $\rho_{\gamma} \approx 0.3 \ GeV/cm^3$ corresp. 3 WIMPs^(100GeV) / Liter
 - $75000 / s / cm^2$

 \Rightarrow very very very rare scattering events (< 0.1 / week / |

up to know 11 years of measurement $(\sim 300.000 \text{ kg x days}, 0.8 \text{ ton x year})$

Modulation with 8σ Confidence

Model Independent Annual Modulation Result

DAMA/Nal (7 years) + DAMA/LIBRA (4 years) Total exposure: 300555 kg×day = 0.82 ton×yr experimental single-hit residuals rate vs time and energy

The data favor the presence of a modulated behavior with proper features at 8.2σ C.L.

Direct DM Searches

Direct Dark Matter Search ——— in Germany

Direct DM Searches

Direct Dark Matter Search ——— in Germany

Calorimeters for Dark Matter Search

superconducting phasetransition-thermometer tungsten T_c≈15mK

Sapphire- or CaWO₄-absorber 250gr, 4cm x 4cm x 4cm heat capacitance sapphire 250gr 3.4 MeV / K @ 25mK 220 GeV / K @ 1K

CRESST-collaboration

(Cryogenic Rare Event Search with Superconducting Thermometers)

Max-Planck-Institut München, TU München Universität Tübingen, Oxford University, Gran Sasso Labor

Phonon + Light or Phonon + Charge

EDELWEISS: InterDigit Detectors - Surface Eventsrk Matter Search

with Cryodetectors

CRESST: Phonon + Light

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

Max-Planck-Institut München, TU München Universität Tübingen, Oxford University, Gran Sasso

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

Max-Planck-Institut für Physik University of Oxford Technische Universität München Laboratori Nazionali del Gran Sasso Universität Tübingen Cryogenic Dark Matter search Located in Hall A of LNGS Scintillating CaWO4 target crystals Up to 33 crystals in modular structure (10 kg target mass)

Different materials possible

CRESST set-up at LNGS

shielding:

- underground laboratory
- 45 cm PE (12 tons)
- muon-veto
- radon box
- 20 cm lead (24 tons)
- 14 cm copper (10 tons)
- use only radio-pure materials

Coldbox closed

Half Cu/Pb schield closed

300 g CRESST-II Detector Module

The phonon detector: 300 g cylindrical CaWO₄ crystal. Evaporated tungsten thermometer with attached heater.

The light detector: Ø=40 mm silicon on sapphire wafer. Tungsten thermometer with attached aluminum phonon collectors and thermal link. Part of thermal link used as heater

CRESST-II: up to 33 detector modules

CRESST-II Detectors

Discrimination of nuclear recoils from radioactive backgrounds by simultaneous measurement of phonons and scintillation light

Identification of recoiling nucleus possible

neutron calibration

All results preliminary

- running since summer 2009
- 10 detectors running (1 ZnWO₄)
- Clamps not covered with scintillator
- data analysis is still in progress
- Data discussed are from 9 CaWO₄
 detectors (about 400 kgd)

Data

What are these events in O-band?

Neutrons ?

a leakage ?

Low mass WIMPs ?

Detector	E0.1[keV]	events
5	12.35	5
20	11.85	2
29	11.65	4
33	15.55	2
43	15.55	4
45	19.15	2
47	17.35	4
51	9.65	6
55	22.25	3
Tryotol es	timate bo	ickapound

Check for coincidences

Neutrons ?

No double coincidences

if neutrons (MeV neutrons from a source) one would expect ~ (25-30)% double coincidences between different detector modules

2 triple coincidences Orecoil + Orecoil + 1.8MeV gamma Orecoil + 30 KeV gamma + 1.18MeV gamma

~ 70% of muon induced neutrons are such coincidences with gammas => only ~ 3 out of the 32 events can be explained as muon induced

=> the events are NOT neutrons !

Degraded alphas from external contamination in clamps

Discrete alpha lines from contamination in crystal are no problem
Degraded alphas with continuous energy distribution down to lowest energies from

external contamination in clamps

Estimation of a background in oxygen band

- Background of degraded external a's from contaminated clamps.
- Oxygen and a band partially overlap and some a's may leak into signal band.
- Estimate dN/dE in overlap free region of alpha band and then compute expectation in oxygen band assuming constant dN/dE.

Conclusions

CRESST detectors are very powerful and able to perform precision measurements

 Inelastic Dark Matter scenario becomes very unlikely to explain the DAMA result

Neutron background is negligible and can not explain our signals in oxygen band

- Background from degraded alphas is less then observed signals in oxygen band, a precise estimate is difficult.
- presently no explanation for ~ 30 events on Oxygen recoil region could be light WIMPs or some 'strange' feature of alpha background
- a new run with strongly reduced alpha background is the next step. It should help to pin down the nature of the observed signals with high confidence.

Direct DM Searches - Future

Direct Dark Matter Search with Cryodetectors

Cryogenic Dark Matter Searches in Europe

Direct Dark Matter Search with Cryodetectors

EURECA

Direct Dark Matter Search with Cryodetectors

Germany, France, UK, Spain, Russia, Ukraine

combines all European cryogenic DM efforts:

R&D cooperation with CDMS/GeoDM

2009/10: design study => TDR

2011/12: LSM excavation + construction EURECA components

- 100 kg fiducal target at present sites,
 10⁻⁴⁵ cm²
- 2013/14: construction at LSM

2015: begin data taking at LSM

2015 – 2018:

- continuous upgrade to 1t target
- ~ 10⁻⁴⁶cm²

