First results of the ANTARES Neutrino Telescope

Thomas Eberl for the ANTARES collaboration
32nd International School of Nuclear Physics
Erice Sept. 17th, 2010
The High-Energy Universe

Supernova remnants
(SN1006, optical, radio, X-ray)

Active Galactic Nuclei
(artist’s view)

Microquasars
(artist’s view)

Gamma-ray Bursts
(GRB 080319B, X-ray, SWIFT)
Messengers of the High-Energy Universe

Cosmic ray spectrum

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
High-energy particle production in the universe

- Accelerator (source)
- Shock fronts (Fermi acceleration)
- Strong magnetic fields up to 10^{15} Gauss (pulsars, magnetars)

- Beam dump (secondary particle production)
- Interaction with photon field, matter, interstellar medium
- Protons: pion decay

\[p + p(\gamma) \rightarrow \pi^{\pm} + X \quad p + p(\gamma) \rightarrow \pi^{0} + X \]

\[\mu + v_\mu \quad \gamma + \gamma \text{(TeV)} \]

\[\rightarrow e + v_\mu + v_e \]

- Electrons: inverse Compton-scattering of photons

\[e^+ \gamma \rightarrow e + \gamma \text{(TeV)} \]
Why neutrino astronomy?

- Neutrinos point back to the source
- Neutrinos travel cosmological distances
- Neutrinos escape from optically thick sources
- Neutrinos are a clear sign for hadron acceleration
- Neutrinos provide complementary information to gamma-rays and protons
Physics with neutrino telescopes

- **Galactic sources**
 (Supernova remnants, Binary systems, Pulsar Wind Nebulae ...)

- **Extra-Galactic sources**
 (Gamma-ray Bursts, Active Galactic Nuclei ...)

- **Dark Matter**
 (WIMPs)

- **Cosmogenic neutrinos**
 (GZK, Top-down, ...)

- Supernovae (MeV neutrinos)

- Neutrino oscillations (atmospheric neutrinos 10 - 100 GeV)

- Cosmic-ray anisotropy (atm. muons)

- Exotic physics
 (Lorentz violation, monopoles, ...)

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
Principle of neutrino detection

ANTARES:
Angular resolution
0.3° for $E_{\nu} > 10$ TeV

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
Neutrino Candidate

Reconstructed up-going muon (i.e. a neutrino candidate) detected in 6/12 detector lines:

Zenith: 34.8°
Fit on 5 line(s)

Run 34927 Frame 7155
Wed Jun 18 00:08:10 2008
Trigger bits 80002020
Line 1-12 Physics Trigger (th)
Sky coverage

ANTARES
- > 75%
- 25% – 75%
- < 25%

TeV γ-Sources
- galactic
- extragalactic

IceCube
- 100%
- 0%

0.5 \(\pi \) sr instantaneous common view
1.5 \(\pi \) sr common view per day

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
The ANTARES Collaboration

27 institutes in 7 European countries
ANTARES in the Mediterranean

La Seyne-sur-Mer, near Toulon, France

Main cable (45km)
ANTARES

- 12 Lines (885 PMTs)
- Completion May 2008
- Instrumented volume: \(~0.01\ km^3\)
Calibration
(selection)
Detector positioning

• Acoustic system
 • 1 emitter (+ receiver)
 at each line socket
 • 5 receivers along each line
• Compass and Accelerometer
 • 1 Compass at each storey
 • 1 Acc. at each storey

• Measure every 2 min
 • Acoustics: distance sockets - receivers
 • Compass: heading
 • Accelerometer: tilt

Line shape
Detector positioning

typical line shape

\[r = (az - b \ln(1-cz))v^2 \]

- Example for Sea current
 - \(v = 25 \text{ cm/s} \)
 - \(r_{\text{max}} = 22 \text{ m} \)

mostly coherent movement of lines
Position monitoring for PMTs

- Precision of positioning: $\Delta x < 10$ cm
- Monitoring of the positioning with laser pulses

\rightarrow Precision ~ 0.5 ns $= 10$ cm
Background
Optical background due to 40K-decay and bioluminescence:

- Typical rate per PMT 60-120 kHz
- Additional short bursts and periods with higher rates
Bioluminescent Sources

- Bacteria: steady baseline source of light (30kHz in 10'' PMT)
- Macro-organisms: short flashes (up to MHz)

E.g.
large colonial organisms such as pyrosomes (megaplankton)

Size range: 0.2 - 2000 mm
Particle background: atm. muons and neutrinos

- Flux from above dominated by atmospheric muons
- Neutrino telescopes optimised to be sensitive to neutrinos from below
Selected Results
Reconstructed muon tracks: angular distribution

5-line data (May-Dec 2007) + 9-12-line data (2008)

341 days detector live time

1062 neutrino candidates

good agreement with Monte-Carlo expectation:

upward-going: atmospheric neutrinos: 916 (30% syst. error)

atmospheric muons: 40 (50% syst. error)
Muon flux: depth-intensity relation with 5 Lines

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
Scrambled sky map of 1000 neutrinos

Galactic coordinate System

Equatorial coordinate System

Scrambled in azimuth

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
Point source sensitivity

5-line data 2007, preliminary

Increased sensitivity for full detector
Dark matter search

upper limits from experiments

5-line data 2007
68 days detector live time

Competitive with direct detection for SD cross section
Observation of induced electromagnetic showers from muon tracks

Analysis Technique:

Projection of “late” photons onto reconstructed muon track

preliminary

Rate [Hz]

Data

Monte Carlo

Number of showers

10^5

10^6

10^7

10^8

0 1 2 3 4 5 6

Entries

Cerenkov photons

EM shower

Cerenkov photons

Muon direction

Z-axis

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
Energy estimator

\[R = \frac{\text{Number of prompt and late PMT signals}}{\text{Number of all PMTs contributing to the event}} \]
Energy estimator

\[R = \frac{\text{Number of prompt and late PMT signals}}{\text{Number of all PMTs contributing to the event}} \]

\[E^2 \Phi_{\text{abs}} = 10^7 \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \]

\[E^2 \Phi_{100\% \text{ C.L.}} = 4.5 \times 10^5 \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \]
Upper limit on diffuse flux of HE ν

\[E^2 \frac{dN}{dE} \text{[GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}] \]

\begin{align*}
\text{Frejus} & \quad \text{MACRO} \\
\text{Baikal NT-200} & \quad \text{Amanda-II UHE} \\
\text{Amanda-II ν_e} & \quad \text{Amanda-II ν_μ} \\
\text{ANTARES-2007-09 ν_μ} & \quad \text{(W&B)/2} \\
\end{align*}

\[E^2 \Phi(E)_{90\%\text{CL}} = 4.5^{+2}_{-1} \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \]

0.83 * 2\pi sr

monitored for
334 days

with
reduced detector setup
during construction phase

Th. Eberl for the ANTARES collaboration, 32nd Int. School of Nucl. Physics, Erice Sept. 2010
Summary and Outlook

• ANTARES is continuously taking data
• ANTARES complements the sky coverage of IceCube
• ANTARES has a broad physics program
• ANTARES determined sensitive upper limit on HE diffuse ν flux
• ANTARES paves the way for KM3NeT