Experimental evidence of electron neutrino oscillations and validation of MSW-LMA model with Borexino

Margherita Buizza Avanzini for the Borexino Coll.
BEFORE SOLAR NEUTRINOS... THE SUN BURNING

98% of energy through the pp chain

CNO? Just 2% of energy...
BEFORE SOLAR NEUTRINOS... THE SUN BURNING

98% of energy through the pp chain

GNO? Just 2% of energy...

But what about neutrinos?!
SOLAR NEUTRINOS

Standard Solar Model (BPS09) predicts **fluxes** and **spectra** of ν_e:

Real time Cherenkov experiments can investigate only the final part of 8B spectrum.

Solar neutrino experiments helped in clarifying the neutrino physics: **neutrino oscillations**.
SOLAR NEUTRINOS

Standard Solar Model (BPS09) predicts **fluxes** and **spectra** of ν_e:

Real time Cherenkov experiments can investigate only the final part of 8B spectrum.

Solar neutrino experiments helped in clarifying the neutrino physics: **neutrino oscillations**.
The **survival probability** of ν_e for the MSW-LMA solution:

VACUUM REGION: low energy, oscillations like in the vacuum.

VACUUM-MATTER TRANSITION: in between

MATTER REGION: high energy, oscillation affected by the matter effect (MSW effect)
THE MSW-LMA SOLUTION

The **survival probability** of ν_e for the MSW-LMA solution:

- **VACUUM REGION**: low energy, oscillations like in the vacuum.
- **VACUUM-MATTER TRANSITION**: in between
- **MATTER REGION**: high energy, oscillation affected by the matter effect (**MSW effect**)

\[\nu_e \] real time experiment with energy threshold of detected electron at about **4 MeV** ($\approx 10^{-4}$ of the total flux) \rightarrow **matter region**.

What new with Borexino??
THE BOREXINO EXPERIMENT

For the first time in real time:

- **Test of Standard Solar Model**: precise measurement of ^7Be neutrino flux!
- **Test of MSW-LMA solution** at low energy!
- BOREXINO can measure ALSO ^8B neutrinos!
- Energy threshold for ^8B neutrinos down to **3 MeV** (electron energy)!

First real time experiment for low energy solar neutrinos!

- Main goal: ^7Be flux measurement
- But also: measure of ^8B neutrinos!!!
- And for the future... **pep** and **pp**
THE BOREXINO DETECTOR

Water Tank:
- γ and n shield
- μ water Ch detector
- 208 PMTs in water
- 2100 m3

Scintillator:
- 270 t PC+PO in a 125 μm thick nylon vessel

Nylon vessels:
- Inner: 4.25 m
- Outer: 5.50 m

Stainless Steel Sphere:
- 2212 photomultipliers
- 1350 m3

Software cut at 3m,
- defining the Fiducial Volume (100tons)

Detection of solar ν through the elastic scattering on electrons in high purified scintillator (300tons).
R_{7Be} = 49 \pm 3_{\text{stat}} \pm 4_{\text{sys}} \text{ c/d/100 tons}
\textbf{EXPECTED RATE SSM+MSW-LMA}

Whole energy spectrum: $\sim 0.5 \text{ c/d/100 tons}$

Above 5 MeV: $\sim 0.14 \text{ c/d/100 tons}$

BUT we can decrease the threshold down to 3 MeV !!!
EXPECTED RATE SSM+MSW-LMA

Whole energy spectrum: \(\sim 0.5 \text{ c/d/100 tons} \)

Above 5 MeV: \(\sim 0.14 \text{ c/d/100 tons} \)

BUT we can decrease the threshold down to 3 MeV !!!

Why the energy threshold at 3 MeV??
8B NEUTRINO FLUX MEASUREMENT (1)

EXPECTED RATE SSM+MSW-LMA
Whole energy spectrum: \(~ 0.5 \text{ c/d/100 tons}~

Above 5 MeV: \(~ 0.14 \text{ c/d/100 tons}~

BUT we can decrease the threshold down to 3 MeV !!!

Why the energy threshold at 3MeV??
2.6MeV gammas from ^{208}Tl coming from the PMTs reaching the FV

Setting the threshold at 3MeV
BACKGOUND SOURCES (above 3MeV)

DATA SPECTRUM BEFORE THE ANALYSIS

Rate: 50 c/d/100 t

live-time: 345.3 d

Signal/Bkg ratio < 1/150 !!!

HARD GOAL!
BACKGOUND SOURCES (above 3MeV)

DATA SPECTRUM BEFORE THE ANALYSIS

Rate: 50 c/d/100 t
live-time: 345.3 d

Signal/Bkg ratio < 1/150 !!!

HARD GOAL!

- Cosmic muons
- High energy γ (4.9 MeV) from neutron capture on 12C
- Cosmogenic isotopes
 - 214Bi and 208Tl from vessel contamination of 238U and 232Th
 - 214Bi and 208Tl from internal contamination of 238U and 232Th

Ad hoc technique for each kind of background !!!
BACKGROUND SOURCES (above 3MeV)

MUONS AND COSMOGENIC NEUTRONS

Study of the pulse shape in the scintillator ≠ point-like events!!
+ rejection of gamma from n capture, in coincidence with the µ
BACKGROUND SOURCES (above 3MeV)

MUONS AND COSMOGENIC NEUTRONS

Study of the pulse shape in the scintillator ≠ point-like events!!
+ rejection of gamma from n capture, in coincidence with the µ

COSMOGENIC ISOTOPES

Study of cosmogenic isotopes through the coincidence with the father muon.
Rate measurements in agreement with Kamland results (arXiv:0907.0066)
\[^{214}\text{Bi} \] \[\beta \rightarrow ^{214}\text{Po} \] \[\alpha \rightarrow ^{210}\text{Pb} \]

\[\tau = 236 \ \mu s \]

Search for fast coincidences in time and space between

BACKGROUND SOURCES (above 3MeV)
BACKGROUND SOURCES (above 3MeV)

$^{214}\text{Bi CONTAMINATION}$

Searching for fast coincidences in time and space between ^{214}Bi and ^{214}Po

$^{214}\text{Bi} \xrightarrow{\beta} \tau = 236$ μs $\xrightarrow{\alpha} ^{210}\text{Pb}$

FIDUCIAL VOLUME CUT

Radon contamination from the vessel... diffusion and decay in ^{214}Bi and ^{208}Tl

\rightarrow Necessity of a radial cut at 3m
$^8\text{B NEUTRINO FLUX MEASUREMENT (2)}$

ENERGY SPECTRUM OF OUR DATA

- After muons rejection
- After cosmogenic rejection
- After radial cut

![Energy Spectrum Graph](image)
RESULTS ON THE 8B ν MEASUREMENT (1)

Comparison data/MonteCarlo for 345.3 d of livetime:

Phys. Rev. D82, 033006, 2010
RESULTS ON THE $^8\text{B }\nu$ MEASUREMENT (1)

Comparison data/MonteCarlo for 345.3 d of livetime:

Phys. Rev. D82, 033006, 2010

Statistically subtracted
RESULTS ON THE 8B ν MEASUREMENT (2)

$R_{8B} (E>3\text{MeV}) = 0.217 \pm 0.038_{\text{stat}} \pm 0.008_{\text{sys}} \text{ c/d/100 tons}$

$R_{8B} (E>5\text{MeV}) = 0.134 \pm 0.022_{\text{stat}} \pm 0.008_{\text{sys}} \text{ c/d/100 tons}$
- 7Be + constraint on pp: experimental evidence in the vacuum region!!!
- 8B: 2 new points in the matter region!!!
$P_{ee}(^7\text{Be}) / P_{ee}(^8\text{B}) = 1.93 \pm 0.75$

Vacuum/matter ratio @ 1.9 σ level !!

Using data from the same apparatus !!
WHAT ELSE?? DAY-NIGHT ASYMMETRY !!

- **MSW mechanism**: ν_μ interaction in the Earth could lead to a ν_e regeneration effect

- The size of the effect depends on:
 - detector **latitude**
 - neutrino **energy**
 - oscillation **parameters**

- **Very small effect expected with MSW-LMA**:
 - LOW solution predicts a large ADN effect
 - LMA and LOW predict similar 7Be absolute values but very different ADN

<table>
<thead>
<tr>
<th>Observable</th>
<th>LMA ($\pm 3 \sigma$)</th>
<th>LOW ($\pm 3 \sigma$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Be-ν_e P_{ee}</td>
<td>0.64 $^{+0.09}_{-0.05}$</td>
<td>0.58 \pm 0.05</td>
</tr>
<tr>
<td>ADN(%) 7Be</td>
<td>0.0 $^{+0.1}_{-0.0}$</td>
<td>23 $^{+10}_{-13}$</td>
</tr>
</tbody>
</table>

J. Bahcall et al., JHEP07(2002)05
WHAT ELSE?? DAY-NIGHT ASYMMETRY !!

\[
ADN = \frac{N - D}{(N + D)/2}
\]

- **MSW mechanism:** ν_μ interaction in the Earth could lead to a ν_e regeneration effect

- The size of the effect depends on:
 - detector **latitude**
 - neutrino **energy**
 - oscillation **parameters**

- **Very small effect expected with MSW-LMA:**
 - LOW solution predicts a large ADN effect
 - LMA and LOW predict similar 7Be absolute values but very different ADN

<table>
<thead>
<tr>
<th>Observable</th>
<th>LMA ($\pm 3,\sigma$)</th>
<th>LOW ($\pm 3,\sigma$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Be-ν_e P_{ee}</td>
<td>$0.64^{+0.09}_{-0.05}$</td>
<td>0.58 ± 0.05</td>
</tr>
<tr>
<td>ADN(%) 7Be</td>
<td>$0.0^{+0.1}_{-0.0}$</td>
<td>25^{+10}_{-13}</td>
</tr>
</tbody>
</table>

J. Bahcall et al., JHEP07(2002)05
ADN STUDY IN BOREXINO

Although already excluded by reactor+radiochemical data, **Borexino alone** can add an independent confirmation.

The ^7Be flux is obtained from the separate full fits of the day and night spectra

- ^7Be Day spectrum: 387.46 days
- ^7Be Night spectrum: 401.57 days

\[
ADN = \frac{N - D}{(N + D)/2} = 0.007 \pm 0.073 \text{ (stat)}
\]

Borexino alone validates the MSW-LMA model!!!

New analysis in progress with 2/3 times better sentitivity
ADN STUDY IN BOREXINO

Although already excluded by reactor+radiochemical data, Borexino alone can add an independent confirmation.

The 7Be flux is obtained from the separate full fits of the day and night spectra

- 7Be Day spectrum: 387.46 days
- 7Be Night spectrum: 401.57 days

\[
ADN = \frac{N - D}{N + D} = 0.007 \pm 0.073 \text{ (stat)}
\]

Borexino validates the MSW-LMA model!!!

New analysis in progress with 2/3 times better sensitivity
ADN MAY PROBE NEW PHYSICS

Mass Varying Model

Very large predicted effect:

\[\text{ADN} = -23\% \]

(note negative sign!)

Borexino alone excludes the Mass Varying Model !!!
AND FOR THE FUTURE?!

^8B and ^7Be NEUTRINOS!!

- Reduce the error on ^7Be flux down to 5%
- better constraint also on pp neutrinos
AND FOR THE FUTURE?!

8B and 7Be NEUTRINOS!!

- Reduce the error on 7Be flux down to **5%**
- better constraint also on **pp neutrinos**
AND FOR THE FUTURE?!
\(^8\text{B} \text{ and } ^7\text{Be} \text{ NEUTRINOS!!}

- Reduce the error on \(^7\text{Be}\) flux down to 5%
 ➞ better constraint also on pp neutrinos

- Reduce the energy threshold on \(^8\text{B}\) neutrino measurement down to 2MeV
 ➞ approaching the unexplored region between 1 and 3 MeV !!!
AND FOR THE FUTURE?!

^7Be, ^8B and pep NEUTRINOS!!

- Reduce the error on ^7Be flux down to 5%
 - better constraint also on pp neutrinos

- Reduce the energy threshold on ^8B neutrino measurements down to 2MeV
 - approaching the unexplored region between 1 and 3 MeV !!!

- Pep measurement:
 fundamental test of P_{ee} in an unexplored energy region!!