First Physics
with ALICE

Johannes P. Wessels
Institute for Nuclear Physics, WWU Münster
International School of Nuclear Physics, 30th Course, Erice, 20 Sep 2008
overheated supermagnet

the most expensive experiment of the world is broken
Prospects for First Physics with ALICE

- commissioning without beam
- first pp running
- early heavy ion physics

Johannes P. Wessels
Institute for Nuclear Physics, WWU Münster
International School of Nuclear Physics, 30th Course, Erice, 20 Sep 2008
J.P. Wessels - Prospects for First Physics with ALICE

Start-up Configuration 2008

- **complete** - fully installed & commissioned
 - ITS, TPC, TOF, HMPID, MUONS, PMD, V0, T0, FMD, ZDC, ACORDE, DAQ

- **partially completed**
 - TRD (25%) to be completed by 2009
 - PHOS (60%) to be completed by 2010
 - HLT (30%) to be completed by 2009
 - EMCAL (0%) to be completed by 2010/11

- at start-up full hadron and muon capabilities
- partial electron and photon capabilities
Overall Plan

- **commissioning phase (ongoing since February)**
 - fully commission trigger, DAQ, ECS
 - align and calibrate the entire system
 - use of beam gas interactions (10 Sep 08)

- **first pp run (on the verge of being started)**
 - important pp reference data for heavy ions
 - minimum bias running
 - unique pp physics to ALICE

- **early heavy ion run (10^6 s @ 1/20 luminosity - 10d 2009)**
 - establish global event characteristics
 - bulk properties (thermodynamics, hydrodynamics…)
 - start of hard probe measurements
Alignment of Inner Tracking System (ITS)

Silicon Pixel Detector (SPD):
- ~10M channels
- 240 sensitive vol. (60 ladders)

Silicon Drift Detector (SDD):
- ~133k channels
- 260 sensitive vol. (36 ladders)

Silicon Strip Detector (SSD):
- ~2.6M channels
- 1698 sensitive vol. (72 ladders)

ITS total: 2198 alignable sensitive volumes → 13188 d.o.f.
J.P. Wessels - Prospects for First Physics with ALICE

ITS Russian Dolls - Sliding the SSD/SDD over the SPD

TPC

SPD

SSD/SDD
ITS tracking of cosmics: at IP2: $p > 10$ GeV/c, $<p> \sim 20$ GeV/c (Hebbeker, Timmermans, 2001)
- expect $10^4 \mu$/wk in ITS
- uses L0 SPD FastOR trigger ($\varepsilon=81\%$ w. 97\% purity)
- robustness tested with “extreme” misalignment scenarios
- provides partial alignment (5 weeks -> SPD - order 10 μm)
- d_0 resolution measurement via two-track matching of cosmics

\[\sigma_{d_0} = 12 \mu m \]

\[\sigma_{d_0} = 21 \mu m \]
resolution of d_0 is the key parameter for the reconstruction of weak decays of D- and B-mesons

decay length: $c\tau = 300$-$500\ \mu m \ (D^\pm)$, $c\tau = 124\ \mu m \ (D^0)$
laser system for drift velocity determination and ExB-measurement
100 samples, each with ~2300 tracks (fitted and extrapolated)
60-70 μm precision in x and y, 30 μm – in z
initial requirement: better than 100 μm
< 0.05 mrad precision on rotation angles
initial requirement: better than 0.1 mrad
TPC - The Largest Ever

- radius: 85 cm – 247 cm
- length: 2x2.5 m
- gas: Ne/CO₂ (90/10) 88 m³
- drift time: 88 μs (500 bins)
- #channels: 560,000
- 560 million pixels
- max. trigger rate: 200 Hz
- 180 space points/track
 (σₓ,ᵧ,ᵣ<500μm)
- can handle up 15000 tracks
tracking efficiency at small p

- robust and redundant tracking from ~100 MeV to 100 GeV
- $\delta p/p < 5\%$ at 100 GeV
- in conjunction with excellent particle ID

$\text{dN}_{\text{ch}}/\text{dy} = 6000$

J.P. Wessels - Prospects for First Physics with ALICE
Actual TPC Performance (I)

tracking cosmics in magnetic field

Krypton gain calibration

C. Garabatos, M. Ivanov, A. Kalweit
Actual TPC Performance (II)

particle ID
5\times10^6 cosmics
Kr calibration

cosmics

momentum resolution
ALICE detector performs very well in pp
- very low momentum cutoff (<100 MeV/c)
- new x_T-regime (10^{-5})
- p_T-reach up to 100 GeV/c
- comparison to other experiments
- excellent particle identification
- efficient min. bias trigger

First physics in ALICE will be pp
- provides important "reference" data for heavy ion program

Unique pp physics in ALICE e.g.
- multiplicity distribution
- baryon transport
- measurement of charm cross section
- major input to pp QCD physics

Start-up
- some collisions at 900 GeV
 \rightarrow connect to existing systematics

PP nominal run
- $\int \mathcal{L} dt = 3 \cdot 10^{30} \text{cm}^{-2} \text{s}^{-1} \times 10^7 \text{s}$
 30 pb$^{-1}$ for pp run at 14 TeV
 $N_{pp\text{ collisions}} = 2 \cdot 10^{12}$ collisions
- muon triggers:
 $\sim 100\%$ efficiency, < 1 kHz
- electron trigger:
 $\sim 25\%$ efficiency of TRD L1
- min. bias triggers:
 20 events pile-up (TPC)
 $N_{pp\text{ minb}} = 10^9$ collisions
Day 1 - Charged Particle Acceptance

ALICE detector η acceptance

- operating with fast multiplicity trigger L0 from Silicon Pixels
- efficiency studied for
 - single diffractive
 - double diffractive
 - non-diffractive events
previous experiments triggered on and published non-single-diffractive events (NSD)

- ALICE will measure full inelastic cross section

\[
\sigma_{\text{total}} = \sigma_{\text{elastic}} + \sigma_{\text{non-diffractive}} + \sigma_{\text{single-diffractive}} + \sigma_{\text{double-diffractive}}
\]

\[
\text{insensitive}
\]

ALICE trigger

- ND-INEL: 98.2%
- SD: 55.4%
- DD: 58.4%
Charged Particle Multiplicity

- extend existing energy dependence
- unique SPD trigger (L0) for min. bias precision measurement
- new look at fluctuations in pp (neg. binomials, KNO…)

J.P. Wessels - Prospects for First Physics with ALICE
Only a few ten thousand events are necessary for these analyses
First Strange Particle Studies

- based on Pythia for LHC
- significant samples of strange particles in 70 million minimum bias events:
 - $K^0: 7 \times 10^6$
 - $\Lambda: 7 \times 10^5$
 - $\Xi: 2 \times 10^4$
 - $\Omega: 270$
- detailed study of flavor composition

<table>
<thead>
<tr>
<th></th>
<th>K^0_s</th>
<th>Λ</th>
<th>Ξ</th>
<th>Ω</th>
<th>p</th>
<th>\bar{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>yield per event</td>
<td>0.1</td>
<td>0.01</td>
<td>2×10^{-4}</td>
<td>10^{-5}</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

$\Lambda^*(1520) \rightarrow pK$
Baryon - Antibaryon Asymmetry

- experimental challenge: distinguish between the two pictures
 - baryon number transport via quark exchange
 - baryon number transport via string junction exchange

- large rapidity gap at LHC (> 9 units)

- predicted absolute value of the second case ~ 3-7%

- additional prediction: asymmetry multiplicity dependent

\[A = 2 \cdot \frac{N_B - N_{\overline{B}}}{N_B + N_{\overline{B}}} \]

- systematic error of asymmetry below 1% for $p > 0.5$ GeV/c: contributions from uncertainties in the cross sections, material budget, beam gas events
- statistical error < 1% for 10^6 pp events (< 1 day)
- can be extended to $\Lambda, \overline{\Lambda}$ (asymmetry larger)
Heavy Flavor Precision Measurements

- $D^0 \rightarrow K + \pi$ in pp from reconstructed secondary vertices
- $B \rightarrow e + X$ in pp (depends on initial TRD overage)

- Expected sensitivity in comparison to different pQCD parameterizations (from 10^9 events)
Heavy Flavor in Muon Channel

- muon channel: J/ψ, $Y \rightarrow \mu^+\mu^-$
 - $(2.5 < y < 4)$
 - 60000 J/ψ and 2000 Y
- initial sample sufficient to study production rates of J/ψ and Y states in muon channel

- $b \rightarrow \mu$

pp @ 14 TeV

- dN_{b}/dp_T (GeV$^{-1}$c$^{-1}$) vs p_T (GeV/c)
 - All μ^\pm
 - Beauty μ^\pm
 - Charm μ^\pm
 - $W\mu^\pm$
 - $Z\mu^\pm$

J/ψ

- N_{μ} (counts) vs $M_{\mu\mu}$ (GeV/c2)

Y

- N_{μ} (counts) vs $M_{\mu\mu}$ (GeV/c2)
Heavy Ion Physics with ALICE

- fully commissioned detector and trigger
 - alignment and calibration available from pp
- first 10⁵ events: global event properties
 - multiplicity, rapidity density
 - collective flow
- first 10⁶ events: source characteristics
 - particle spectra, resonances
 - differential flow analysis
 - interferometry
- first 10⁷ events: high p_t, heavy flavors
 - jet quenching, heavy flavor energy loss
 - charmonium production
- yield bulk properties of created medium
 - energy density, temperature, pressure
 - heat capacity/entropy, viscosity, sound velocity, opacity
 - susceptibilities, order of phase transition

early ion scheme

- 1/20 of nominal luminosity
- \(\int L dt = 5 \cdot 10^{25} \text{ cm}^{-2} \text{ s}^{-1} \times 10^6 \text{ s} \)
 - 0.05 nb\(^{-1}\) for PbPb at 5.5 TeV
 - \(N_{\text{PbPb collisions}} = 2 \cdot 10^8 \text{ collisions} \)
 - (400 Hz)
- muon triggers:
 - \(\sim 100\% \) efficiency, < 1kHz
- centrality triggers:
 - bandwidth limited
 - \(N_{\text{PbPb minb}} = 10^7 \text{ events (10Hz)} \)
 - \(N_{\text{PbPb central}} = 10^7 \text{ events (10Hz)} \)
J.P. Wessels - Prospects for First Physics with ALICE

Estimated Charged Particle Multiplicity Density

Integrated multiplicity distributions from Au+Au/Pb+Pb collisions and scaled p+p collisions

- ALICE designed (before RHIC) for $dN_{ch}/dy = 3500$
- Design checked up to $dN_{ch}/dy = 7000$

$dN_{ch}/dy = 2600$
- Saturation model
Eskola hep-ph/050649

$dN_{ch}/dy = 1200$
- $\ln(\sqrt{s})$ extrapolation

J.P. Wessels - Prospects for First Physics with ALICE
Elliptical Flow - Day 1 Physics

- Data increase linearly
- Hydrodynamical limit reached at RHIC → ‘ideal fluid’
- Clear predictions from hydrodynamics
- Sensitive to equation-of-state

- Very robust signal - no PID necessary
- Event plane resolution < 10°
with part of the event removed displaced vertices can be seen

$\Xi^- \rightarrow \Lambda \pi^-$
Reconstruction of Resonances
\((\rho, \phi, K^*, K_0^0, \Lambda, \Xi, \Omega \ldots) \)

10^7 events:
- \(p_t \) reach \(\phi, K, \Lambda \)
 - \(\sim 13\text{-}15 \text{ GeV} \)
- \(p_t \) reach \(\rho, \Xi, \Omega \)
 - \(\sim 9\text{-}12 \text{ GeV} \)

300 central events
\(\Lambda \)
13 \(\Lambda/\text{evt} \)

\(\rho^0(770) \rightarrow \pi^+\pi^- \)
10^6 central Pb-Pb
Mass resolution
- \(\sim 2\text{-}3 \text{ MeV} \)

\(\phi(1020) \rightarrow K^+K^- \)
Mass resolution
- \(\sim 1.2 \text{ MeV} \)

- hadrochemical analysis
- chemical / kinetic freeze-out

- medium modifications of mass, widths
Multiplicities at LHC allow for measurement of event-by-event fluctuations

\(<p_T>, T, \text{ multiplicity, particle ratio, strangeness, azimuthal anisotropy, long range correlations, balance function, …}\)

Fluctuations are associated with phase transition

4th moment of the net charge

Lattice computations at small chemical potential (S. Ejiri, F. Karsch, K. Redlich)

Resolution \(\sigma_T/T\): 0.5 % for \(\pi\)
Jet Production at LHC

10^7 events

- first measurement up to 100 GeV (untriggered charged jets only)
- detailed study of fragmentation possible
- sensitive to energy loss mechanism
- accuracy on transport coefficient <^q> ~20%

<table>
<thead>
<tr>
<th>p_t jet > (GeV/c)</th>
<th>jets/event Pb+Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.5 10^2</td>
</tr>
<tr>
<td>50</td>
<td>7.7 10^-2</td>
</tr>
<tr>
<td>100</td>
<td>3.5 10^-3</td>
</tr>
<tr>
<td>150</td>
<td>4.8 10^-4</td>
</tr>
<tr>
<td>200</td>
<td>1.1 10^-4</td>
</tr>
</tbody>
</table>

Annual ALICE run statistics

- <E_{input}>~125 GeV
- Pb+Pb 0-10%: <p_t>~50
- p+p norm

J.P. Wessels - Prospects for First Physics with ALICE
J.P. Wessels - Prospects for First Physics with ALICE

- compare these cross sections to pp cross sections $\rightarrow R_{AA}$
- energy loss of c,b quarks in medium

\[\text{error decomposition} \]

\[\frac{d^2 \sigma_{NN}}{dp_T dy} \text{ [mb/(GeV/c)]} \]

Pb-Pb, $\sqrt{s_{NN}} = 5.5$ TeV
B \rightarrow e+X

- stat \pm syst error
- stat error

107 events (full TRD)
11% from overall normalization not included

Relative error on beauty [%]

- statistical
- cross-section norm.
- tot. p_T-dep. syst.
- syst. from MC corr.
- syst. from charm subtr.
Transition Radiation Detector (TRD)

- 540 modules \(\rightarrow \sim 760\text{m}^2\)
- length: 7m
- \(X/X_0 \sim 21\%\)
- 28 m\(^3\) Xe/CO\(_2\) (85:15)
- 65 kW LV power
- 1.2 million channels
- 30 million pixels

- electron ID in central barrel \(p>1\text{ GeV/c}\)
- fast trigger for high momentum particles

processing of track segments
local tracking on each chamber:

- 275000 CPUs process 65 MB of data from track segments within 6.5 \(\mu\text{s}\)
- search electron pairs
Charmonia via Di-Electron Measurement

- electron ID with TPC and TRD
- expect 2500 Υ per PbPb year with good mass resolution and S/B

Simulation: $2 \cdot 10^8$ central PbPb collisions
J.P. Wessels - Prospects for First Physics with ALICE

ALICE (Di)-Muon Spectrometer

- Dipole magnet
- Muon chambers
- Muon absorber
- Muon filter
Quarkonia Suppression (μ-Channel)

Suppression depends on T_D/T_C

- Suppression 1
 - Quenched QCD $T_C=270$ MeV

- Suppression 2
 - Unquenched QCD $T_C=190$ MeV

J/Ψ:
- Excellent sensitivity to different suppression scenarios stat. err~5%

- If production enhanced compared to pp direct signal for deconfinement
- J/Ψ produced via stat. hadronization

Andronic et al., PLB in print
Summary & Outlook

- **commissioning phase**
 - fully commission trigger, DAQ, ECS
 - align and calibrate the entire system
 - further use of beam gas interactions

- **first pp run**
 - important pp reference data for heavy ions
 - unique physics to ALICE
 - minimum bias running
 - fragmentation studies
 - baryon number transport
 - heavy flavor cross sections

- **first few heavy ion collisions**
 - establish global event characteristics
 - important bulk properties

- **first long heavy ion run**
 - quarkonia measurements
 - jet suppression studies
 - flavor dependences

Outlook

- **high luminosity heavy ion running (1nb⁻¹)**
 - dedicated high p_t electron triggers
 - jets > 100 GeV (EMCAL)
 - Y - states
 - γ - jet correlations
 - ...

- **pA & light ion running**