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Outline

• HBT: What is it, why its relevant, and how it does not fit

• Bulk viscosity in QCD: A short introduction

• A guess of what it means for freezeout

• Stability of hydrodynamics with a QCD-inspired bulk viscosity

• Some discussion



HBT: classical source emitting quantum free particles
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Ψ(x1,2, p1,2) =
1√
2

(

S(x1, p1)S(x2, p2)e
i(p1x1+p2x2) ± S(x2p1)S(x1p2)e

i(p2x1+p1x2)
)

Measurement of C(p1, p2) gives handle on S(x, p)

C(p1, p2) ∼ |S̃(p1 − p2, p2)|2

Where the momentum correlation coefficient C(p1, p2) is

C(p1, p2) =
ρ(p1, p2) − ρ(p1)ρ(p2)

ρ(p1)ρ(p2)

And S̃(k, q) =
∫

d4xS(x, q)eikx



What is S(x, p)? Assuming at a “critical” Σµ = (tf , ~xf) (defined by
t, lmfp, ...) mean free path goes from 0 (ideal hydro) to ∞ (free particles),
by Energy, momentum and entropy conservation

S(x, p) = dΣµpµ 1

euµpµ/T ± 1

Hydro plus a freeze-out criterion (usually, T = 100 MeV or so. NOT the
same as QGP-HG ) gives uµ,Σµ

This of course is a very rough approximation. ”doing better” is model
dependent. This is why signatures insensitive to freeze-out (as v2,jet
suppression are thought to be) are highly considered. But we should still
get a qualitative effect from formation of a new state of matter



Usually S̃(q, p) ∼ Gaussian ⇒ parametrization in terms of Rout, Rside, Rlong

S( k︸︷︷︸
p1+p2

, q
︸︷︷︸
p1−p2

) ≃ N(k) exp
[
R2

o(k)q2
o + R2

s(k)q2
s + R2

l (k)q2
l + Rij(k)qiqj

]

S.Pratt, PRD33, 1314 (1986), G. F. Bertsch, NPA498, 173c (1989).

”long” Beam direction (~z)

”out” (~p1 + ~p2) × ~z

”side” ”out”×”long”

kside = 0 by construction



This parametrization is useful because...
If

〈
(∆xµ)2

〉
(p) =

∫

d4xS(x, p)(x − 〈x〉)2

then

R2
o =

〈(

∆r − ko

k0
∆t

)2
〉

R2
s =

〈
(∆r)2

〉

Comparing R0 and Rs → emission time. This was “the” signature for
deconfinement, as it probed softness of EOS!
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Motivation: The HBT puzzle I: Why no effect of transition on Ro/Rs
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No first order phase transition, but why no signal at all?

And scaling with dN/dy1/3 implies sudden break-up. not compatible with
hydro+constant T f.o., as larger fireballs freeze-out more slowly
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Does this mean:

(a) HBT is complicated (Gaussian approximation, homogeneity regions,
deviation from chaoticity, resonances, reinteractions,...) let’s not care
too much if we get it wrong.
S.Pratt,WPCF2008: HBT puzzle nearly solved by interplay of pre-existing
flow, correct (soft) EoS and viscosity

(b) Our physics understanding is basically correct. But something is missing
that would allow us to understand freeze-out.

(c) Panic! We don’t have a clue! (whole model wrong)



WHY NOT (c) (Dont panic!)

0 . 4 0 . 5 0 . 6 0 . 7

0 . 5

1

1 . 5

2
0 . 4 0 . 5 0 . 6 0 . 7

2
4
6
8

1 0
0 . 4 0 . 5 0 . 6 0 . 7

2
4
6
8

1 0

p

p

P H E N I X  
c  =  1 0  %[ f m ]

R
R

side
o u t

+
-

R
o u tR

side

k    [ G e V ]

[ f m ]

0

1

2

3

4

5

6

7

8

0.2 0.3 0.4 0.5 0.6

R
o

u
t 
[f

m
]

Mt [GeV/c]

STAR π-π-

STAR π+π+

PHENIX π-π-

PHENIX π+π+

0

1

2

3

4

5

6

7

8

0.2 0.3 0.4 0.5 0.6

R
s
id

e
 [
fm

]

Mt [GeV/c]

fits also spectra
best fit to HBT

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6

R
lo

n
g
 [
fm

]

Mt [GeV/c]

Hubble expansion and high
(chemical) T freeze−out  

Baran et al,nucl−th/0212053

"Buda−Lund"
Hot (>Tc) core
+Colder halo

Csorgo et al, nucl−th/0510027

"Blast wave"
Flow+Sudden freezeout
(Il lab frame)
put artificially

Frodermann et al,nucl−th/0602023 

UP TO absolute freeze−out criterion

This suggests hydro basically OK

works with same parameters as v2.
AZIMUTHAL dependence of HBT radii

"Krakow model"

Heinz and Kolb,nucl−th/0208047

Absolute value of HBT has been described in a plethora of "Hydro−inspired" fit models

Many more.

These are FITS
but they suggest

where to look
for explanations



Why not (a) (Dont get complacent)
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All ”most obvious Improvements” (3D,hadronic afterburner) spoil the fit.
Only “good” fit so far by Krakow group (0808.3663).



Gaussian initial conditions
(~20% correction)

But not enough!
Romatschke et al also
has this

of speed of sound
I  Smooth cross−over

Lattice gives a large
systematic error

What did Chojnacki et al  (arXiv:0808.3663) do differently?

But Rout/Rside flat,
radii scale with dN/dy

Big effect, but why?

Simultaneus
freezeout at

high T 

(150−170 MeV)

(Here from U. Heinz)

There should be
STRUCTURE

If freeze−out Temperature high 
(~Tc) there SHOULD be
reinteraction

when energy scanned

Progress... but f.o. condition has to be justified, and what about SCALING?



What we might be missing... Bulk viscosity.

In hydrodynamic system, bulk viscosity is a kind of flow-dependent force
counteracting pressure

p → p − ζ
︸︷︷︸

Bulk viscosity

∂µuµ

Its a “stickiness” of inter-molecular forces, related to conformal transformations

λ̂︸︷︷︸

~x→λ~x,~p→λ−1~p

Tµν|hydro → Tµν|hydro (p − λ∂µuµ)

So if EOS conformally invariant ζ = 0!!!!



Does this apply to QCD? Lagrangian nearly conformally invariant

LQCD = −1

4
F i

µnuFµν
i

︸ ︷︷ ︸
Invariant

+ ∂µqf − i
Watch!
︷︸︸︷
gs Aj

µt̂jqf
︸ ︷︷ ︸

Invariant

−mfqfqf
︸ ︷︷ ︸
mf≪T

Perturbatively
ζ

η
∼ 10−5

(Dogan, Arnold, Moore)



But quantum corrections break conformal symmetry.

here
~Conformal

But not here!!!!!

Conformal anomaly small at weak coupling, diverges at strong coupling.



What does bulk viscosity do in this regime?
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Lattice evidence, and an educated guess from QCD says it peaks,maybe
even diverges



So ζ should dominate strong coupling dynamics. How?

Oil2Honey

ζ diverging → Hydro not a good description anymore

But then All we have is guessing. So lets guess!



Λ−4

QCD

3

ζ
T

1/ε

HGQGP (hydro not applicable) 
fluid, local
equilibrium

What I will say in the next pages of mathematics can be easily ”conceptually”
visualized: Imagine a homogeneusly expanding gas, that at a certain point,
turns into ”glue” (with the inertial forces still in place). The homogeneus
expansion continues being a solution. but its obvious that a filamentation
of the medium occurs



A more formal derivation
relativistic hydrodynamics.General hydrodynamics (Q = 0): Conservation
of energy-momentum

∂µT µν = 0

local thermalization

Tµν = ( p
︸︷︷︸

pressure

+ ρ
︸︷︷︸

energy

)uµ uν︸︷︷︸
flow

−pgµν + Πµν

together with Equation of state, closed system (solvable for all initial
conditions. Deviations encoded in Πµν. First order (Navier-Stokes)

Πµν = η∂<νuµ> + ζ∂αuαuµuν

Only bulk viscosity just means “effective pressure”

P → P − ζ∂αuα



Boost invariance (“Bjorken” hydrodynamics)
Basic idea: If

√
s >> m System invariant under boosts

t

x
T1

T3

T2

Boost

vz =
z

t
, e = e

(

τ =
√

z2 − t2
)

, ∂αuα =
1

τ



Easily generalized to N-Hubble dimensions, ~v ∝ ~x/t, M homogeneus
dimensions
The M-dimensional Hubble expansion of a viscous fluid homogeneous in
N−M dimensions (N = 3, M = 1 ∼ heavy ions, N = M = 3 ∼ cosmology
with flat space) obeys

τ−M d(τMs)

dτ
=

Ms

Rτ
Where τ is the proper time, s is the entropy and the Reynolds number R is

R−1 =
2(1 − M/N)η + Mζ

Tsτ

Where η is the shear and ζ is the bulk viscosity. Linearized hydrodynamics:

s(τ) = s0(τ) + δs(τ, y)eiky

y = yspacetime + δyeiky



We assume the bulk viscosity to be peaked around Tc

.An ansatz compatible with lattice QCD is

ζ = s

(

zpQCD + z0 exp

[

−(T − Tc)
2

2σ2

])

where ζPQCD = 10−3s. The shear viscosity (indistinguishable from bulk
viscosity in 1D) is given in the strongly coupled limit as

η = s/4π

The results are qualitatively independent of N, M , EoS (s(T ) ∼ T 3 or
lattice).



Results: Background Solution evolution
Diagram shows Entropy density (Red dot-dashed, Normalized by τ =
τ0),total entropy in one unit of rapidity (Blue dashed, normalized),and
temperature (Black solid, normalized by Tc) for N=3,M=1.

Panels show no peak (z0 = 0), a small peak (z0 = 1) and a dominant peak
(z0 = 10). In all cases σ = 0.01Tc.



When viscosity has a peak, temperature and entropy density encounter a
plateau. During this plateau (whose duration increases rapidly with the
peak amplitude, further expansion is dissipated away, and the co-moving
temperature and entropy content of the system is nearly static. Total
entropy, consequently, increases rapidly.

As the next sections show, in this plateau the solution is unstable against
small perturbations



Stability analysis in hydrodynamics
This analysis was pioneered by Kouno et al, PRD 41, 2903 (1990). Expand
perturbations around the background solution of the 1D Hydrodynamic
equation (in Rapidity, and time) and instabilities x1,2 in s(τ), v

(
x1

x2

)

=

(
δs/s0

yflow − yspacetime

)

eikyspacetime

Equation of motion for instabilities is of the form

τ
∂

∂τ

(
x1

x2

)

=

(
A11(τ, k, R) A12(τ, k,R)
A21(τ, k, R) A22(τ, k,R)

) (
x1

x2

)

where Aij(τ) are expressions in terms of the background solution (too long
to quote here, see Kouno’s paper).



Stability determined by the equation of motion governing the modulus ~x~xT

τ
∂

∂τ
~x~xT = ~x

(

~~A
T

+
~~A

)

~x

The stability is determined by the eigenvalues of

(

~~A
T

+
~~A

)

(λmin,max).

λmin~x~xT < τ
∂

∂τ
~x~xT < λmax~x~xT

If λmin,max > 0, solution unstable. If λmin,max < 0 solution stable. If one
is positive, the other negative, there is one unstable and one stable mode.



Results: EigenvaluesThe plot below shows the Eigenvalues of the system
for k=4 (black line) and 8 (blue line).

Independently of k,away from Tc the system is either stable or slightly
unstable. Towards Tc, however, the modulus of both Eigenvalues increases
throughout the peak. This means perturbations in the unstable Eigenmode
can grow to a large (compared to the background solution) value in a short
(∼ fm) time, destroying the background solution



What if there are stable and unstable solutions?

On one end One growing unstable mode is enough to destroy the symmetry
of the system

On the other the time-evolution of Ai,j(τ) could well prevent the unstable
mode from growing by rotating the Eigenvectors. The complete equation
of motion for ~x, needs to be integrated to fully take this effect into
account.

We need to solve the complete equation of motion to understand thhe
behaviour of the instabilities



Results: Eigenvectors
Plot shows the evolution of x1/x2 for the unstable Eigen-mode with τ

When there is no viscosity peak, direction of unstable Eigenvector rotates,
cutting off growth of unstable modes. Viscosity peak, however, “freezes”
direction of Eigenvectors allowing instabilities to grow



Results: Evolution of instabilities
The diagram below shows the full stability analysis for the problem (Black
for k = 2,blue for k = 8)At each time step, an unstable mode is generated

and then integrated until the end. The graph shows ~xT~x(τ)

~xT~x(τinitial)



If no ζ peak,the system remains stable because rotation of Eigenvectors
cuts off instability growth. If viscosity has a large peak (z0 ∼ 10), a
perturbation of ∼ 10−1 would grow to >> 1 after a few fm. Note: This is
not turbulence (which arises at low ζ, η and affects all solutions) but rather
an instability of a specific solution



What happens to the instabilities?

T~Tc

Need 3D viscous (Israel-Stewart?) hydro, but a reasonable guess is that
inhomogeneities become “clusters” with no internal expansion.These clusters

• Move with pre-existing flow suppressing hadronic gas phase!

• Emit particles by “evaporation” Introducing a small system size independent
scale into the emission function

And THAT is the missing ingredient of the HBT puzzle.



Does Israel-Stewart matter?
Not if Relaxation time smaller than scales of expansion dynamics:

β =
dT

dt

τΠ

∆T |eq

≪ 1

At β ∼ 1, by the time viscosity “turns on” peak is missed.

dT
dt from dynamics, ∆T from lattice, τΠ from?!?! (AdS/CFT? Hard Balls?)



Glauber,CGC etc. model dN/dy as a function of Npart well.
These assume all entropy generated at beginning of collision.
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But viscosity → Entropy generation ∆S ∼ ζ (∂µuν)
2

Any increase in viscosity generally leads to deviations from Npart vs dN/dy.
Issue of all proposals of solving HBT by viscosity jump.



What about entropy?

Won’t a divergence in ζ produce a lot of entropy and screw up your favourite
Glauber/CGC Npart vs dN

dy relation?

With clustering, no! Since

∂µsµ ∼
∫

dtζ (∂µuµ)
2

A rapid divergence in ζ followed by clustering would quickly kill ∂µuµ inside
cluster, and hence entropy generation.



Scenario superficially similar to clustering due to first order phase transition

”bubbling” Is thermodynamic in origin (”bag” pressure, requires a first
order transition

oil2honey Does not require first order transition, bubbles are blobs of ”hot”
matter, hydrodynamic in origin, no ”bag constant”, its role taken by ζ,
but only ”turns on” with expansion

QCD very different from ”everday” fluids: these are either viscous and
compressible or inviscid and incompressible, since inter-molecular distance
controls both.



Cluster size

Something like Λ−1
QCD?

but then what distinguishes “clusters” from “Hadrons”?
Mass should certainly be of the order of high mass resonances (∼ Hagedorn?)

Clusters: High temperature “incoherent” states

Hadrons: (including resonances) Pure states

evolution between them impossible (non-unitary) without decoherence.
Hagedorn picture?



Clusters and HBT

Two step freeze-out:

Cluster formation ∼ Cooper-Frye at T ∼ 170 MeV, with pre-existing
hydrodynamic flow uµ.

Cluster decay After τ ∼ ΛQCD. Each cluster a Gaussian emission source

S(x′, p′) ∼ 1

τ
e−E′/Te(t′2+x′2+y′2+z′2)/(2τ2)

x′ → uµτ + Λµ
ν(uµ)xν p′µ → Λµ

ν(uµ)xν

Hope: Hydro output for uµ, dΣµ at T=170 MeV+”sensible” τ would
describe HBT data.



How Clusters might solve HBT

Ro/Rs = 1 Cluster small, so cluster decay fast independently of size of the
system

Near independence of Ro/Rs with
√

s Cluster formation (above deconfinement)
in the whole region of Ro/Rs = 1. If this is true, QGP formed
considerably below RHIC.Not proven, but smoothness of all soft signals
interesting in this respect

Ro,s,l scaling with (dN/dy)1/3 Interplay of cluster size with number of
clusters (∼ (dN/dy)1/3)
A lot of work needs to be done (by me!) here!



Further phenomenology proposals

• Direct test with Kolmogorov-Smirnov test (With B. Tomasik)

• Electromagnetic probes (could ”ρ” continuum seen by NA60 be clusters?)

• Resonances (Enhanced due to ”Hagedorn” decay chain of clusters)

• Fluctuations (Ratio fluctuations enhanced w.r.t. statistical models)

• Cosmological implications



Conclusions and outlook

• HBT interferometry still not properly explained by hydrodynamics

• QCD predicts sharp rise of ζ near Tc, might have a role in solving HBT
puzzle

• Instabilities might arise and drive freeze-out

• This idea still needs to be connected to experimental data.

Lots of work and new ideas needed here



BACKUP SLIDES



Photon observables
Sensitive to all freeze-out stages

Idea: Broadening of,e.g., the ρ can give information about microscopic
properties and dynamics between chemical and thermal freeze-out.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

500

1000

1500

2000

2500

3000

3500
In-In SemiCentral

T
all p

2
dN

/d
M

 p
er

 2
0 

M
eV

/c

)2M (GeV/c

SPS In-In: The ρ has been broadened, presumably by hadronic interactions



Or is it?

vacuum

Vacuum+Continuum
or broadening???!!!

What we see is an unbroadened “vacuum” ρ on top of a continuum.
It could be that a model with broadening explains this after some parameters
are tuned, but no confirmation that continuum is relatedt o ρ.



Temperature of the continuum: New surprises.

In continuum mass dependence of slope nearly the same as hadrons.
But hydro tells us transverse flow created throughout collision
Are µcontinuum emitted at last moment? And what happens at m = 1 GeV



Beyond heavy ion collisions...

Could such viscosity-driven instabilities play a wider role than in heavy ion
collisions?

The Universe Expands through a very similar equation to the 3D Bjorken
one

τ−M d(τMs)

dτ
=

Ms

Rτ
,M = N = 3

Gravity should make system less stable (Jeans)

QCD transition Happens very late (τ ∼ 1020), so a lot stabler. But
this behaviour of viscosity might be universal for all asymptotically free
theories. Similar behaviour during some GUT-scale transition?

Instabilities Must by causality be small, and unless distorted by inflation
will dissipate. Might play a role of “hot-spots” for baryogenesys



Divergence is stronger than expected from just EoS
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Gubser et.al. use AdS+Scalar to calculate ζ/s fro strongly coupled theory
where s/T 3 fit lattice. Peak not as strong as Khazeev et al. Why?
S. Jeon (hep-ph/9409250): η ∼ n 〈p〉 τelastic, ζ ∼ n 〈p〉 τinelastic

(τa→b:Equilibration timescale for a → b)



If τelastic = τinelastic, at weak coupling (Boltzmann eq.)

ζ = η

(
1

3
− c2

s

)

But in QCD...

Confinement introduces a string tension. Even if small, All elastic
processes become inelastic.

χ-symmetry restoration gives rise to a 〈qq〉 , 〈GµνG
µν〉. At T = Tc, this

can be interpreted as a divergence of τX→X+qq,gg. (NB: Inelastic) τ
related to correlation lenghts , which diverge in 2nd order transition.

Rocha et al’s calculation fails to reproduce QCD behaviour because these
effects not present, evident as in their theory ζ ≃ η

(
1
3 − c2

s

)



More direct signatures: The Kolmogorov-Smirnov test

Basic idea, for any kinetic observable (y, pT , φ)

A homogeneus liquid breaking up might look different event-by event,
but the distribution of any observable is the same

Clusters Introduce differences between event probability-distribution
functions, or event-specific correlations



This has a quantitative consequence for the cumulative distribution function

(
∫ x

−∞
ρ(y)dy, goes from 0 to 1 for all distributions)



If underlying distributions of empirical sets of data (n1,2) are the same,
maximum difference as n = (n1n2)/(n1 + n2) → ∞ distributed as

P
(√

nD < t
)

=
∞∑

k=−∞

(−1)ke−2k2nD2

so

Q = 1 −
∞∑

k=−∞

(−1)ke−2k2nD2

distributed uniformly independently of underlying distributions



No droplets 20% droplets All droplets

But no resonances included here
Even 20% of droplets significantly change the graph



Problem: Not the only source of inter-event correlations

• Resonances

• Initial condition fluctuations (∼ ”volume fluctuations”)

But worth trying with a hydrodynamic model incorporating these
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Resonance correlations can be eliminated by focusing on mid-rapidity


