Exploring the Quark-Gluon Plasma with ALICE at the LHC

Physics background: 20 years after start of fixed target program at AGS and SPS and 8 years after start of RHIC next huge step in collision energy

 $\sqrt{s_{_{\rm NN}}} = 5/19 \text{ GeV} \rightarrow 200 \text{ GeV} \rightarrow 5400 \text{ GeV}$

truely macroscopic energy (what's the difference?

J. Stachel – Physikalisches Institut der Universität Heidelberg Int. School of Nuclear Physics, 30th course 'Heavy Ion Collisions from the Coulomb Barrier to the Quark-Gluon Plasma' Erice, September 27, 2008

expected initial conditions in central nuclear collisions at LHC

initial conditions from pQCD+saturation of produced gluons

$$N_{AA}(\mathbf{0}, p_0, \Delta y = 1, \sqrt{s}) \cdot \pi/p_0^2 = \pi R_A^2$$

using pQCD cross sections find for central PbPb at LHC $p_0 = p_{sat} = 2 \text{ GeV}$ and a formation time of $\tau_0 = 1/p_{sat} = 0.1 \text{ fm/c}$ and with Bjorken formula:

 $\epsilon_0 = dE_t/d\eta/(\tau_0 \pi R^2)$ w. Jacobian $d\eta/dz=1/\tau_0$

as compared to RHIC: more than order of magnitude increase in intial energy density

```
initial temperature T_0 \approx 1 TeV (factor 2-3 above RHIC)
```


expected evolution of QGP fireball at LHC

after fast thermalization hydrodynamic expansion of fireball and cooling $T \propto \tau^{-1/3}$ hadronization starts at when T_c is reached (165 MeV) duration hadronization: # degrees of freedom drops by factor 3.5

-> volume has to grow accordingly -> 3-4 fm/c (this is independent of order of phase transition)

initial N_{AA} determines final multiplicity estimate (Eskola) $dN_{ch}/d\eta = 2600$ overall several 10 k hadrons produced **'macroscopic state'**

expected charged particle rapidity density at LHC

task of heavy ion program at LHC

- unambiguous proof of QGP
- determine properties of this new state of matter

equation of state – energy density ↔ temperature ↔ density ↔ pressure heat capacitance /entropy – number degrees of freedom viscosity (Reynolds number) – flow properties under pressure gradient velocity of sound – Mach cone for supersonic particle opacity / index of refraction / transport coeff. - parton-energy loss excitations / quasi particles - correlations susceptibilities – fluctuations characterisation of phase transition unusual quantities in

particle physics – but we want to characterize matter!

• be open for the unexpected

. . . .

the challenge: identification and reconstruction of 5000 (up to 15000) tracks of charged particles

- ALICE is dedicated experiment to study all aspects of heavy ion collisions at LHC
- detector is starting operation after more than 10 years of hard work and many novel developments

1. The hadro-chemical composition of the fireball

what are the 7500 hadrons observed in final state at RHIC? analysis in terms of statistical ensemble (grand canonical) successful for central PbPb (AuAu) collisions from top AGS energy a new look at e+ewhat do we expect at the LHC?

hadron yields at RHIC compared to statistical model (GC)

130 GeV data in excellent agreement with thermal model predictions

prel. 200 GeV data fully in line still some experimental discrepancies

chemical freeze-out at: $T = 165 \pm 5 \text{ MeV}$

P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B518 (2001) 41 A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772 (2006) 167

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

is success of statistical description unique to heavy ion collisions or generic feature of hadronization?

study of high quality final LEP data – F. Beutler, Heidelberg, diploma thesis 2008 full canonical treatment with conservation of A, Q, S, C, B and quantum statistics

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

these are not good fits...

difference between data and model in standard deviations

A. Andronic, P. Braun-Munzinger, F. Beutler, K. Redlich, J. Stachel, arXiv 0804.4132

\sqrt{s} [GeV]	T[MeV]	V[fm ³]	γ_s	$\chi^2/{ m dof}$
10	$159{\pm}1.7$	$14{\pm}1.5$	$0.80 {\pm} 0.02$	318/21
29-35	$160{\pm}1.7$	$18{\pm}1.4$	$0.96{\pm}0.03$	101/18
91 (all)	$157{\pm}0.50$	$32{\pm}1$	$0.78{\pm}0.007$	630/30
91 (-c,b)	$166{\pm}0.50$	$20{\pm}1$	$0.66{\pm}0.01$	708/30
130-200	$154{\pm}2.8$	$42{\pm}4.3$	$0.78{\pm}0.03$	11/2

- fits not good, in particular to best data set on Z-pole in part, because LEP data are very precise
- 'T' indeed similar to heavy ion collisions at high energy
- strangeness significantly suppressed (gamma_s = 0.66 implies deviation for Omega of factor 3.5)

initialize thermal model with u,d,s,c,b – jets according to measurement (weak isospin)

A. Andronic, P. Braun-Munzinger, F. Beutler, K. Redlich, J. Stachel, arXiv 0804.4132

Johanna Stachel

hadrochemical freeze-out points and the phase diagram

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772 (2006) 167

equilibration driven by high densities near T

rapid equilibration within a narrow temperature interval around T_c by multiparticle collisions P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B596 (2004)61

requires $T_{c} \approx 170 \text{ MeV}$

synopsis of different lattice QCD results - F.Karsch

predicted hadron abundancies for LHC PbPb collisions

A. Andronic, P. Braun-Munzinger, J. Stachel arXiv 0707.4046 [nucl-th] $T_c=161 + 4$ MeV, $\mu_b = 0.8 + 1.2 - 0.6$ MeV

π^-/π^+	K^-/K^+	$ar{p}/p$	$ar{\Lambda}/\Lambda$	$\bar{\Xi}/\Xi$	$ar\Omega/\Omega$
1.001(0)	0.993(4)	$0.948^{-0.013}_{+0.008}$	$0.997^{-0.011}_{+0.004}$	$1.005\substack{+0.007\\+0.001}$	1.013(4)
p/π^+	K^+/π^+	K^-/π^-	Λ/π^{-}	Ξ^{-}/π^{-}	Ω^-/π^-
0.074(6)	0.180(0)	0.179(1)	0.040(4)	0.0058(6)	0.00101(15)

interesting question: what about strongly decaying resonances – sensitive to existence of hadronic fireball after hadronization of QGP

ϕ/K^-	$K^{\ast 0}/K^0_S$	Δ^{++}/p	$\Sigma(1385)^+/\Lambda$	Λ^*/Λ	$\Xi(1530)^0/\Xi^-$
0.137(5)	0.318(9)	0.216(2)	0.140(2)	0.075(3)	0.396(7)

due to their width very difficult to measure RHIC results not conclusive

2. Indications for hydrodynamic expansion

consider particle transverse momentum spectra azimuthal correlations momentum correlations

hydrodynamic expansion to understand transverse spectra already needed for fixed target data at AGS and SPS

slope constants grow with mass - much too large to be temperatures! Hubble Expansion of Nuclear Fireball expansion velocity at surface 2/3 c at SPS, 4/5 c at RHIC

Azimuthal Anisotropy of Transverse Spectra

effect of expansion (positive v_2) seen

from top AGS energy upwards

Johanna Stachel

Ruprecht-Karls-Universität Heidelberg

elliptic flow for different particle species and p_t at RHIC

mass ordering typical effect of hydrodynamic expansion ideal (nonviscous) hydrodynamics describes azimuthal asymmetries up to about 2 GeV/c at sub % level

hydrodynamics describes spectra and elliptic flow

pion

proton

sQGP

low viscosity (maybe zero?) implies strong interactions not ideal gas - actually this was realized from lattice results a long time conjecture: QGP produced at RHIC is strongly interacting

lately a lot of excitement connected to AdS/CFT equivalence what about LHC? does this change at higher T?

D. Teaney, PRC68, 034913 (2003) first order hydro 'wo dynamics'

not enough work on viscous hydro in the last 5 years, but more is starting ... see e.g. Romatschke arXiv 0706.1522 & Teaney's talk today & Son/Heinz qualitative trends established still many open issues when it comes to quantitative comparison to data

alternatively: theoretical determination of viscosity

determination of viscosity/entropy density from lattice QCD via correlation function of energy-momentum tensor H.B.Meyer arXiv 0704.1801 [hep-lat] $\eta/s = 0.134(33)$ at T=1.65 Tc

C. Greiner et al. using perturbative kinetic parton cascade get

elliptic flow at LHC: most models predict stronger effects – sensitivity to initial and final condition and to EOS

T. Hirano et al., J.Phys.G34 (2007)S879

how well will elliptic flow be measured in ALICE at LHC?

3. Charmonia as signature for deconfinement

* T. Matsui and H. Satz (PLB178 (1986) 416) predict J/ψ suppression in QGP due to Debye screening

* significant suppression seen in central PbPb at top SPS energy (NA50) in line with QGP expectations

> J.P. Blaizot, P.M. Dinh, J.Y. Ollitrault, Phys.Rev.Lett.85(2000)4012 Dissolution in QGP at critical density n_c (dashes) and with energy density fluctuations (solid)

> > $n_c = 3.7 / \text{fm}^2$

 $n_{c1}=3.3$ and $n_{c2}=4.2/\text{fm}^2$

J/ψ production in AuAu collisions at RHIC

 R_{AA} : J/ ψ yield in AuAu / J/ ψ yield in pp times N_{coll}

at mid-rapidity suppression at RHIC very similar to SPS suppression at forward/backward rapidity stronger!

> → but prediction: at hadronization of QGP J/ψ can form again from deconfined quarks, in particular if number of ccbar pairs is large N_{J/ψ} ∝ N_{cc}²

(P. Braun-Munzinger and J.Stachel, PLB490 (2000) 196)

what happens at higher beam energy when more and more charm-anticharm quark pairs are produced?

low energy: few c-quarks per collision \rightarrow suppression of J/ ψ high energy: many " " \rightarrow enhancement "

unambiguous signature for QGP!

comparison of model predictions to RHIC data: centrality dependence and rapidity distribution

P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A789 (2007) 334 nucl-th/0611023

 good agreement, no free
 but need for good open charm

 parameters
 measurement obvious

 (this is a lesson for LHC as well!)

systematics of charm cross section compared to NLO pQCD

pQCD cross section consistent with data (modulo discrepancy between STAR and PHENIX) only in spectra at higher pt some deviation

but there is a more revealing normalization:

energy dependence of quarkonium production in statistical hadronization model

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel Phys. Lett. B652 (2007) 259

centrality dependence and enhancement beyond pp value will be fingerprint of statistical hadronization at LHC -> direct signal for deconfinement

predictions for charmonium rapidity and centrality distributions at LHC

yellow band: uncertainty of pQCD prediction for ccbar prod. line: central value

measurement of charmonia in ALICE at mid-rapidity

full simulation of central barrel performance

 2×10^8 central (10%) events, 10^6 sec (1 year run)

D. Krumbhorn, Heidelberg

 2×10^8 central (10%) events, 10^6 sec (1 year run)

10.5

11

flow of quarkonia at LHC?

there is evidence from RHIC that fireball is expanding hydrodynamically do heavy quarks follow?

p_t spectra with flow are very different for charmonia from those measured in pp_bar e.g. at Fermilab or expected for pp at LHC

should be easy to discriminate at LHC

charm quarks at RHIC: spectra don't show initial state scattering effects - follow elliptic flow

bottomonium at LHC

in terms of number of produced quarks, beauty at LHC like charm at RHIC do they thermalize and hadronize statistically?? if yes, population of 2s and 3s states completely negligible (exp- Δ m/T) hydrodynamic flow? need to measure spectrum to 15 GeV

open/hidden heavy flavor measurements in ALICE

- * Hadronic decays: $D^0 \rightarrow K\pi$, $D^+ \rightarrow K\pi\pi$, $D_s \rightarrow KK^*$, $D_s \rightarrow \phi\pi$, ...
- ★ Leptonic decays:
 - $B \rightarrow l (e \text{ or } \mu) + anything$
 - Invariant mass analysis of lepton pairs: BB, DD, BD_{same} , J/Ψ , Ψ' , Υ family, $B \rightarrow J/\Psi$ + anything
 - BB $\rightarrow \mu \mu \mu (J/\Psi \mu)$

$D^0 \rightarrow K\pi$ channel

ALICE PPR vol2 JPG 32 (2006) 1295

- high precision vertexing,
 better than 100 μm (ITS)
- high precision tracking (ITS+TPC)
- K and/or π identification (TOF)

open beauty from single electrons

4. high p, partons as probe of the medium, i.e. the QGP

prediction: in dense partonic matter a jet is losing energy rapidly order several GeV/fm

RHIC result: jet quenching

jet quenching indicative of high gluon rapidity density

I. Vite (2004	ev, JPG 30 4) S791	$ au_0[fm]$	T[MeV]	ε [GeV/fm ³]	$ au_{tot}[fm]$	dN^g / dy
	SPS	0.8	210-240	1.5-2.5	1.4-2	200-350
	RHIC	0.6	380-400	14-20	6-7	800-1200
	LHC	0.2	710-850	190-400	18-23	2000-3500

•Consistent estimate with hydrodynamic analysis

several mechanisms describe jet
quenching at RHIC -> predictions
for LHC span very wide range
R_{AA} stays at 0.2 out to 100 GeV or so
R_{AA} rises slowly toward high pt
R_{AA} much smaller than at RHIC
need to cover large p_t range
go beyond leading particle analysis
identified jets, frag. function, ...

jet measurements in ALICE

2 GeV	20 GeV	7	100 GeV	200 GeV		
Mini-Jets 100/event	1/event	1 Hz	1	00k/month		
at p > 2 GeV/c :			at hig	h p:		
- leading particle analysis		- reco	nstructed jets			
- correlation studies		- event-by-event well distinguishable object		ble objects		
(similar to RHIC)						

Example : 100 GeV jet + underlying event

for jet physics recently added EmCal will play important role in conjunction with existing charged particle tracking

Johanna Stachel

LHC: increase in gluon density and very high jet energy reach to pin down energy loss mechanism

Johanna Stachel

measurement of jet fragmentation function

sensitive to energy loss mechanism

high precision charm measurement

jet quenching for b-quarks relative to c-quarks

Combined Momentum Resolution in ALICE Central Barrel

 $dN_{ch}/dy \sim 5000$

resolution \sim 3% at 100 GeV/c excellent performance in hard region!

Johanna Stachel

Backup slides

rapid hadrochemical equilibration at phase boundary

Lattice QCD calcs. F. Karsch et al.

Known since years: two-body collisions are not sufficient to bring multi-strange baryons into equilibrium.
The density of particles varies rapidly with T near the phase transition.

• Multi-particle collisions are strongly enhanced at high density and lead to chem. equilibrium very near to $T_{c.}$

P. Braun-Munzinger,J. Stachel, C. WetterichPhys. Lett. B596 (2004) 61nucl-th/0311005

chemical freeze-out takes place at T_c

rate of change of density due to multiparticle collisions ∝n(T)ⁿ_{in} |M |² Φ
example: for small μ_b, reactions such as KKKππ→ΩN_{bar} bring multi-strange baryons close to equilibrium.
Equilibration time τ ∝ T⁻⁶⁰ !
All particles freeze out within a very

narrow temperature window close to T_c.

P. Braun-Munzinger,J. Stachel, C. WetterichPhys. Lett. B596 (2004) 61nucl-th/0311005

High p_T Spectra in p-p Collisions (II)

Quantitative Constraints on Medium Parameters

PQM	GLV	WHDG	ZOWW
$\hat{q} = 13.2^{+2.1}_{-3.2}$ GeV ² /fm	$dN^{g} / dy = 1400^{+270}_{-150}$	$dN^{g}/dy = 1400^{+200}_{-540}$	$\varepsilon_0 = 1.9^{+0.2}_{-0.5} \text{GeV/fm}^3$

heavy quark distributions from inclusive electron spectra

surprize: suppression very similar to pions

prediction (Dokshitzer, Kharzeev) less energy loss for heavy quarks (radiation suppr.)

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

radiation fails, is scattering the solution for heavy quarks?

recently shown by Korinna Zapp (U. Heidelberg) that scattering also important for parton energy loss; implementation in nonperturbative approach - SCI jet quenching model (K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, PLB637 (2006) 179

$D^0 \rightarrow K\pi$ channel

ALICE PPR vol2 JPG 32 (2006) 1295

- high precision vertexing,
 better than 100 μm (ITS)
- high precision tracking (ITS+TPC)
- K and/or π identification (TOF)

high precision charm measurement

open beauty from single electrons

jet quenching for b-quarks relative to c-quarks

