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An apology:

This is NOT a talk for the experts



3

Collision Geometry: Elliptic Flow

Elliptic flow (v2):

• Gradients of almond-shape surface will lead 
to preferential expansion in the reaction plane
• Anisotropy of emission is quantified by 2nd 
Fourier coefficient of angular distribution: v2

 prediction of fluid dynamics

Reaction 
      plane

x

z

y

 Bulk evolution described by 
relativistic fluid dynamics,

 assumes that the medium is in 
local thermal equilibrium,

 but no details of how equilibrium 
was reached.

 Input: ε(x,τi), P(ε), (η,etc.).
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λ f →
η
R
≈ ε + p( )K

Shear viscosity
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Momentum transport along flow gradient:

Scales:

Homogeneity length  R

Mean free path  λf

Thermal wavelength  T-1

Knudsen number:  K = λf / R



Viscosity

 Kinetic theory: 
 Increasing interaction ➡ decreasing mean free path           

➡ diminishing ability to transport momentum via particles  
➡ decreasing shear viscosity

 Counter-intuitive:
 Why then is honey highly viscous?

 Transforming structure ➡ alternative mechanisms:
 As interaction grows, eventually the material’s structure 

rearranges, and new momentum transport mechanisms  
with larger mean free path take over, e.g. waves (in solids); 
momentum transport along molecular chains (in polymers).
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Temperature dependence of the shear viscosity of typical fluids:
4π

 ×

Real materials
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Elliptic flow “measures” ηQGP

Boost invariant hydrodynamics with T0τ0 
~ 1 requires η/s ≤ 0.1.

Bound may be relaxed by “sharper” 
shape of initial energy density (CGC 
initial conditions).

  

∂µT
µν = 0 with      T µν = (ε + P)uµuν − Pgµν +Πµν

τΠ
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Relativistic viscous hydrodynamics:

The QGP is an almost perfect liquid.

Romatschke & Romatschke
BJ’s critique: Theory should be compared with
identified particle (π) elliptic flow data.
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Flow & equilibration
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Q: Does hydrodynamic flow imply local equilibration? 

A: Local equilibrium and small velocity gradients (compared 
with mean-free path) imply the validity of hydrodynamics.

But not the reverse! - Collectivity in plasmas can be caused 
by the action of fields (magnetohydrodynamics):

Magnetic fields can also reduce the shear viscosity in 
“turbulent” plasmas (anomalous viscosity).
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Anomalous viscosity

9

Momentum change per domain:

Effective mean-free path:

Anomalous shear viscosity:

Can occur at RHIC either in “glasma” phase or during free 
streaming longitudinal expansion due to plasma instabilities.



q̂ = ρ k2 dk2
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q q
Radiative energy loss:

Radiative energy loss

Scattering centers = color charges
q q

g

L

Density of 
scattering centers

Range of color forceScattering power of 
the QCD medium:

   
ΔE  ρL2 kT
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Connecting      with η

Hard partons probe the medium via transverse momentum exchange:

If kinetic theory applies, thermal partons can be described as quasi-particles 
that experience the same medium. Then the shear viscosity is:

In QCD, small angle scattering dominates; then

q̂

Now:

Majumder, BM, Wang
PRL 99: 192301 (2007)

with c ≈ 1 - 1.25



dpµ(τ)
dτ

= gτaF a
µν

(
x(τ)

)
uν(τ)

〈pµ(x−1 )pν(x−2 )〉 = pµ(0)pν(0) + g2CR

∫ x−1

0
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∫ x−2

0
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〈pT (x−)2〉 = pµ(0)2 + x−g2CR
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0
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〈F a
µν(x)〉 = 0 〈F a

µν(x)F b
αβ(y)〉 =

〈E2 + B2〉
6(N2

c − 1)
(δµαδνβ − δµβδνα)δabC(x − y)

= q̂

“Turbulent” QGP

12

[
∂

∂t
+ "v ·∇r + "F ·∇p

]
f("r, "p, t) = C[f ] with "F = gQa( "Ea + "v × "Ba)

[
∂
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]
f̄ = C[f̄ ] with Dij =
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−∞
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F2 τm ≡ dt Fi
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13

Anomalous viscosity

Take moments of with (pz)
2

M.  Asakawa, S.A. Bass, BM, 

PRL 96: 252301 (2006) 

Prog. Theor. Phys. 116: 725 (2006)
Again:
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Weak vs. strong coupling
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holds generally under two conditions (“weak coupling”):

1. Medium is described by nearly massless quasi-particles 
with the same properties as the high-energy (“jet”) modes;
2. Interactions are dominated by small-angle scattering.

The relation fails at strong coupling, e.g. strongly coupled N=4 SYM theory,
or when thermal quasi-particles have different quantum numbers (pion gas).

N=4 SYM theory for g2Nc→∞:

but: 



q̂

1.25T
3

q̂
≈ 0.145

   in QCD
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q̂

scaling ASW HT AMY

T 10 2.3 4.1

ε3/4 18.5 4.5 -

S.A. Bass et al. - arXiv:0808.0908

(GeV2/fm) for gluons3-D ideal hydrodynamics with
radiative energy loss only

Inclusion of collisional energy loss in AMY 
reduces to:      ≈ 2.75 GeV2/fm.q̂

With Tmax ≈ 400 MeV at 0.6 fm/c this gives:
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Where is RHIC?
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Summary

 Kinematic shear viscosity and radiative energy loss, both 
probe momentum transport in the medium.  Small viscosity 
corresponds to large energy loss.

 A simple inverse relation holds in thermal gauge theories at 
weak coupling.

 At strong coupling, η/s is limited by the KSS bound, but     
can become arbitrarily large. 

 Existing approaches to jet quenching do not agree in their 
conclusions about the physical nature of the QGP formed at 
RHIC.

 Reliable determinations of η/s and     from RHIC (and soon 
LHC) data have a very high priority.
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q̂

q̂
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THE   END


